
Master’s Thesis

Dynamic Tracing of Windows NT Kernel Mode Components

Johannes Passing

Supervisors
Prof. Andreas Polze, Hasso Plattner Institute, Potsdam, Germany
Dr. Martin von Löwis, Hasso Plattner Institute, Potsdam, Germany
Dipl. Inf. Alexander Schmidt, Hasso Plattner Institute, Potsdam, Germany

October 2008

ii Abstract

Abstract

Dynamic tracing can be utilized for a variety of purposes, debugging, performance evaluation,
and program analysis being amongst them. Although the implementations of respective
tracing systems tend to differ sharply, a limited number of tracing techniques can be
identified which all of these solutions base on. Based on this insight, part I of this thesis
discusses these tracing techniques in detail and proposes an appropriate classification
scheme. This scheme promises to allow both current and future tracing solutions to be
classified based on their usage of these tracing techniques.

In its second part, this thesis discusses NTrace, a dynamic function boundary tracing
solution for Windows NT kernel mode components that has been developed as part of
this effort. NTrace not only demonstrates how synergies with Microsoft’s Hotpatching
technology can be utilized in order to achieve safety regarding runtime code modification.
It also stands out due to deep integration with the exception handling infrastructure of
Windows, Structured Exception Handling. With the ability to trace exception unwinds,
NTrace is able to yield more precise results than a sheer function entry/exit tracing approach
would allow.

By not restricting the usage to customized kernel versions but providing support for retail
editions of IA-32 Windows NT, NTrace also promises general applicability. Finally, the
performance of NTrace, and the overhead imposed by tracing activity, is discussed in part
III, which concludes the thesis.

Zusammenfassung iii

Zusammenfassung

Dynamische Ablaufverfolgung kann für eine Vielzahl von Zwecken eingesetzt werden, wie
etwa zu Performance-Messungen, Programmanalyse oder zur Fehleranalyse auf Produk-
tivsystemen. Obschon die Implementierungen entsprechender Ablaufverfolgungs-Systeme
sich bisweilen stark zu unterscheiden neigen, so kann doch eine kleine Menge von Tech-
niken identifiziert werden, auf denen diese basieren. Ausgehend von dieser Erkenntnis
befasst sich Teil I dieser Arbeit mit den Details dieser Techniken und schlägt ein Klassi-
fikationsschema für diese vor. Das Schema verspricht, sowohl derzeitige als auch künftige
Ablaufverfolgungs-Systeme anhand der von ihnen verwendeten Techniken einordnen zu
können.

Teil II der Arbeit befasst sich mit NTrace, einem Werkzeug zur dynamischen Ablaufverfol-
gung von Funktionsein- und austritten in Windows NT Kern-Komponenten. Es handelt
sich hierbei um eine Neuentwicklung, die im Rahmen dieser Arbeit entstanden ist. NTrace
zeichnet sich dabei insbesondere durch zweierlei Aspekte aus: Zum einen wird aufgezeigt,
wie Synergien mit der Microsoft Hotpatching-Technologie genutzt werden können, um
sichere Anwendung von selbstmodifizierendem Code zu gewährleisten. Zum anderen um-
fasst NTrace eine tiefgreifende Integration mit der Ausnahmebehandlungs-Infrastruktur
des NT Kerns, Structured Exception Handling. Diese Integration ermöglicht NTrace die
Ablaufverfolgung von Ausnahmeabwicklungen, um so präzisere Ergebnisse zu erlangen.

NTrace erfordert keinerlei Anpassungen am NT Kern und kann somit auf handelsüblichen
Editionen des Windows NT IA-32 Kerns genutzt werden, was wiederum vielfältige Anwen-
dungsmöglichkeiten verspricht. Eine Betrachtung der Leistung von NTrace und dem mit
der Ablaufverfolgung verbundenem Overhead ist Teil von Teil III, welcher diese Arbeit
abschließt.

iv Acknowledgments

Acknowledgments

For their valuable feedback, perceptive criticisms and fruitful discussions, I would like to
thank the supervisors of this thesis, Martin von Löwis and Alexander Schmidt.

Not only their support, but also having created the opportunity for me to work with the
Windows NT kernel and address the technically challenging topic of dynamic tracing has
been highly appreciated.

Contents v

Contents

I Theoretical Groundwork 1

1 Introduction 3

1.1 Potential Fields of Applications . 3

1.2 Structure of this Thesis . 3

1.3 Contributions . 4

1.4 Definition of Terms . 4

2 Criteria 5

3 Classification of Dynamic Tracing Techniques 7

3.1 Using Hardware-Generated Events . 8

3.2 Using Software-Generated Events . 8

3.3 Original Code Preserving Approaches . 9

3.4 Modifying the Environment . 9

3.5 Interposing Code Execution . 11

3.6 Original Code Modifying Approaches . 15

3.7 Injecting and Handling Traps . 16

3.8 Editing Code . 17

3.9 Concluding Remarks . 20

4 Challenges Of Runtime Code Modification 21

4.1 Memory Model . 21

4.2 Memory Protection . 21

4.3 Jump distances . 22

4.4 Safety Concerns . 22

4.4.1 Cross-Modifying Code and Atomicity 23

4.4.2 Concurrent Execution . 25

4.4.3 Preemption and Interruption . 25

4.4.4 Basic Block Boundaries . 27

4.4.5 Stack Walking . 27

4.4.6 Life Cycle Management of Dynamically Allocated Code 28

4.4.7 Disassembly . 30

4.4.8 Parameter Validation . 30

4.4.9 Other Events . 30

4.5 Sharing of Resources . 31

4.6 Evaluation of Safety Concerns . 32

vi Contents

II NTrace 33

5 Architectural Overview 35

6 Approach 37

6.1 Context . 37

6.1.1 Build Environments . 38

6.1.2 Operating System Releases . 38

6.1.3 Symbol Management . 39

6.2 Operation . 39

6.2.1 Function Entry Tracing . 39

6.2.2 Function Exit Tracing . 40

6.2.3 Event Callbacks . 41

6.2.4 Putting the Pieces Together . 41

7 Implementation 46

7.1 Instrumentation . 46

7.1.1 Validation . 46

7.1.2 Applying the Patches . 47

7.2 Auxiliary Stack . 48

7.3 Thread Data . 49

7.3.1 ETHREAD Association . 49

7.3.1.1 Windows Research Kernel 49

7.3.1.2 Retail Kernel . 50

7.3.2 Allocation . 51

7.3.3 Deallocation . 52

7.4 Unloading . 52

7.5 CallProxy and CallThunk . 54

7.5.1 State Preservation . 54

7.5.2 Reentrance . 56

7.6 Exception Handling . 56

7.6.1 Structured Exception Handling . 57

7.6.2 Exception Dispatching Process . 58

7.6.3 Auxiliary Stack Unwinding . 59

7.6.3.1 Topmost Exception Handler Initiating an Unwind 60

7.6.3.2 Non-Topmost Exception Handler Initiating an Unwind . . 62

Contents vii

7.6.3.3 Multiple Instrumented Routines Sharing a SEH Record . . 63

7.6.3.4 Empty SEH Chain . 64

7.7 Event Handling . 64

7.7.1 Buffer Management . 64

7.7.1.1 Synchronization . 65

7.7.1.2 Reentrance . 65

7.7.1.3 Ordering . 65

7.7.1.4 Cache Behavior . 65

7.7.1.5 Implementation Choice . 66

7.7.2 Timing . 67

7.7.3 Symbols . 68

7.7.4 Call Nesting . 69

7.8 Concluding Remarks on Runtime Code Modification 70

III Analysis 73

8 Performance Measurements 75

8.1 Benchmark . 75

8.1.1 System . 75

8.1.2 Performance Counters . 76

8.1.3 Test runs . 77

8.1.4 Results . 78

9 Conclusion 83

Bibliography 85

Index 91

viii List of Figures

List of Figures

3.1 Classification of Dynamic Tracing Techniques 7

3.2 Intercepting an indirect call . 9

3.3 Runtime code splicing . 15

5.1 Buffer Management Dynamics . 35

5.2 Screenshot of the Trace View application 36

6.1 Schematic execution flow for tracing entry events of a function Foo 40

6.2 Layout of the stack during execution of a routine. 40

6.3 Schematic execution flow for tracing function Foo 42

6.4 Stack contents at entry of CallProxy . 43

6.5 Stack contents during operation of EntryThunk 43

6.6 Stack contents after return from Foo . 45

7.1 An example callstack when an exception is raised 57

7.2 An example callstack . 61

7.3 An example callstack containing a call frame of an instrumented Routine . 61

7.4 State during execution of the original exception handler 62

7.5 Bottom handler handling the exception . 63

7.6 Multiple auxiliary stack frames mapping onto a single registration record . 63

7.7 Buffer Management Dynamics . 66

7.8 Finding pairs of event records . 69

7.9 Finding pairs of event records in case of lost events 69

8.1 Distribution of traced routines for a single WRK build 76

8.2 Performance Monitor showing selected performance counters 77

8.3 Percentage of events dropped due to reentrance 80

8.4 Total Overhead . 81

8.5 Overhead for each 100 million events handled 81

8.6 Average overhead for each event handled, in nanoseconds 81

List of Tables ix

List of Tables

5.1 A subset of the commands offered by the FBT shell 36

6.1 Support of /hotpatch and /functionpadmin among compiler versions 38

8.1 Instrumentation Sets . 79

8.2 Measurements: Kernel, capturing only . 79

8.3 Measurements: Kernel, with writing to disk 79

8.4 Measurements: Ntfs.sys, with writing to disk 80

8.5 Measurements: Overhead . 80

x Listings

Listings

3.1 Implementation of IofCallDriver, WRK 1.2,
BASE\NTOS\IO\IOMGR\iosubs.c, line 2237 10

7.1 Stack trace illustrating recursion caused by interference of Driver Verifier
with a hashtable based approach . 50

7.2 Definition of an auxiliary stack frame . 60

Part I

Theoretical Groundwork

3

1 Introduction

With growing complexity, software systems have become increasingly hard to understand
and debug. Confronted with large volumes of source code, it is challenging for a developer
to reason about the potential behavior of a system at runtime, much less to diagnose
erroneous behavior exhibited by a running system. Having appropriate tools at hand is
hence indispensable.

This thesis covers dynamic tracing, a building block for creating tools helping to analyze
systems by observing their bevavior. Observing a program as it is being executed, and not
requiring it to be rebuilt or restarted, dynamic tracing is particularly well-suited for long
running systems such as operating system kernels. The focus of this thesis therefore lies on
the analysis of the Windows NT kernel and its components.

The topic can be further refined as addressing function boundary tracing, i.e. capturing
function entry and exit events. Software tracing can be performed at an even more fine-
grained level, yet, function boundary tracing may be expected to yield rather universally
applicable results for the aforementioned purposes.

1.1 Potential Fields of Applications

Given this background, potential and appropriate fields of applications for a dynamic
tracing system for the Windows NT kernel can now be laid out more clearly.

An important potential field of application is production debugging. In production debug-
ging scenarios, a dynamic tracing solution promises to allow instrumentation and recording
of information without interrupting the service of the examined system. Once information
has been collected, instrumentation can be revoked and the data can be analyzed offline.

Besides the capability of capturing information valuable to pinpoint flaws in a software
system, a dynamic function boundary tracing system also promises to help in comprehending
a system. Traces, in particular when visualized properly – for instance, as call graphs – can
help illuminating the runtime behavior and dynamics of a software system.

Dynamic tracing can also be used for profiling. In contrast to sampling-based profilers such
as kernrate1, such a profiler could potentially be more accurate as the risk of missing a
function call due to the sampling interval chosen ceases to exist.

In a similar manner, code coverage – albeit limited to function level rather than basic block
level – could be implemented based on such a dynamic tracing solution.

1.2 Structure of this Thesis

The thesis is structured into three parts. Part 1 covers the theoretical groundwork of
the topic. This includes an assessment and classification of existing dynamic tracing
approaches, along with a discussion of their strengths and weaknesses. The first part
concludes with a detailed discussion of common implementation challenges related to
runtime code modification-based tracing approaches.

Part II introduces NTrace, a dynamic tracing solution developed as part of this thesis. The
part opens with a general discussion of the tool architecture and continues by laying out
the basic approach to function boundary tracing taken. Based on this groundwork, the
details of the approach as well as the implementation challenges are discussed.

The thesis concludes with Part III, which provides an analysis of NTrace. This includes a
discussion and measurements of the performance characteristics of the implementation.

1Part of the Microsoft Windows Server 2003 Resource Kit

4 1. Introduction

1.3 Contributions

The main contributions of this work are as follows:

• Definition of a classification scheme for dynamic tracing techniques.

• Proposal of a dynamic function boundary tracing system for the Windows NT kernel
that fully integrates with the Windows Structured Exception Handling infrastructure.

• Proving the feasibility of the proposed system by an implementation and evaluating
its runtime performance.

1.4 Definition of Terms

The semantic differences between the terms function, procedure, and routine are insignificant
in the context of this work and the terms are used interchangeably. Following [RR03], the
terms module (or executable module) and image (or program image) are distinguished as
follows: A module constitutes a file, usually generated by a linker, containing executable
code. When the module is loaded into a process, the in-memory representation of the
module is referred to as image.

For the remainder of this work, code is considered unmodified if it matches the code that
would be executed in the absence of a tracing system.

The terms trampoline, springboard and bounce, all commonly encountered in the literature
[BH99, HMC94, Bru04, PKFH02, TM99], will be jointly referred to as trampoline.

Any machine that is capable of concurrently executing more than one thread is referred to
as multiprocessor machine. This includes true multiprocessor machines as well as machines
using multicore CPUs or CPUs supporting technologies such as Simultaneous Multithreading
[EEL+97].

The terms i386 or x86 are avoided in favor of the term IA-32 [Int07a] to denote the Intel
32 bit architecture. The AMD64 [Dev07] and Intel64 [Int07a] architectures are jointly
referred to as AMD64.

All references to Windows refer to the Windows NT family exclusively. Unless stated
otherwise, all discussions of Windows NT further refer to Windows Server 2003 SP1/SP2
and the Windows Research Kernel 1.2 only. The term kernel as used in this work does
not include drivers but only refers to the functionality implemented in the kernel module,
usually named ntoskrnl.exe. In contrast, kernel mode Windows refers to the entirety of
code running in kernel mode.

Unless stated otherwise, all references to compiler and linker shall denote the Microsoft
compiler cl and linker link, respectively. As Microsoft compilers and linkers are the prevalent
tools for kernel mode Windows development, other compilers are not addressed by this
work.

Occasionally, use of the syntax module!Function is made to fully qualify routine names.
Finally, all assembler code listings use the Intel syntax.

5

2 Criteria

To allow a more effective assessment of existing and potential tracing techniques, a set of
basic criteria such techniques are to meet shall be defined.

In their paper Dynamic Program Instrumentation for Scalable Performance Tools,
Hollingsworth et al. [HMC94] state that monitoring the performance of massively parallel
programs requires an instrumentation system that is detailed, frugal, and scalable.

The focus of this work is not massively parallel systems but rather general purpose systems
– still, these three criteria remain valid and provide a suitable foundation. However, to
emphasize the fact that monitoring or tracing activity should not endanger system stability,
Robustness shall be introduced as a fourth criterion.

Detailed

In the realm of function boundary tracing, the desired level of detail is defined by function
calls. A solution capable of tracing function entries can be expected to already produce
valuable results. Yet, it is desirable to have the tracing solution also support function exit
tracing, as this additionally allows inferring call relationships among functions.

Whether more fine grained information such as parameter and return values are of impor-
tance depends on the individual purpose. If the intent of tracing is to collect performance
information or to comprehend the overall system, such additional information may be not
of interest. For problem analysis, in contrast, this additional information may be valuable
indeed.

To keep the discussion general in this regard, the aspects of more fine grained information
are therefore ignored in the remainder of this work.

Frugal

Frugality – and performance in particular – is at the core of a dynamic tracing solution. In
fact, the promise of low runtime overhead may have been the reason for a user deciding for
a dynamic tracing solution in the first place. More generally, economical usage of resources
is important for limiting the impact on resource and timing behavior of the traced system,
and thus, to ensure applicability of the tracing system.

Rather than striving at high efficiency, frugality can also be attained by limiting the amount
of data collected. This, however, may stand in conflict with the demand to be detailed. As
such, this conflict depicts the classical conundrum of having to balance between performance
and precision.

Another aspect of frugality is the runtime overhead in case all tracing activity has been
disabled. That is, the tracing system is active, yet no tracing information is currently being
captured. In this case, it is desirable for the tracing solution to impose no or at least no
significant runtime overhead.

Scalable

Scalability describes the ability of the tracing system to remain frugal and detailed when
resources are added. The most important resources in this regard are additional functions
to be traced, and additional processors.

6 2. Criteria

When tracing information is to be captured for a growing number of functions, the amount
of data that is to be handled will grow as well. To remain frugal, the system must be able
to efficiently handle these increased amounts of data.

As multiprocessor machines – and multicore processors in particular – become increasingly
common, the ability to properly deal with more than one processor becomes crucial as well.
Certainly, this requires the tracing system to be written in a multiprocessor-safe manner.
However, to remain frugal, this also requires that the tracing system makes effective use of
the additional processors. In particular, it should not limit the degree in which the tracee
makes use of the additional processors and it should not impose significant performance
bottlenecks itself.

Robust

When tracing is used in development scenarios, robustness may not be of utmost concern.
In production debugging scenarios, however, it is crucial that tracing does not endanger
stability and availability of the traced system.

Runtime code modification, a technique commonly used for implementing dynamic tracing,
is particularly sensitive in this regard. As will be covered in more depth in the remainder
of this work, significant attention to the details have to be paid in order not to undermine
the stability of the system.

As such, robustness clearly is an important factor to consider when assessing dynamic
tracing solutions.

7

3 Classification of Dynamic Trac-
ing Techniques

In contrast to static tracing, dynamic tracing is based on the idea of allowing trace collection
of running programs and unmodified binaries. Any necessary steps to enable such collection
is therefore performed at runtime.

Given this rather broad definition of dynamic tracing, a variety of approaches for im-
plementing dynamic tracing can be identified by studying existing research papers and
implementations. The individual concepts and algorithms encountered among these ap-
proaches vary, yet a small number of key ideas shared among groups of approaches can be
identified. Based on this insight, this section proposes a classification of dynamic tracing
techniques.

Although the focus of the remaining discussion lies on kernel mode instrumentation, user
mode instrumentation solutions are discussed as well. Moreover, approaches targeting
broader application than just tracing – such as profiling or dynamic optimization – are
discussed for sharing many properties with dynamic tracing approaches. Virtualization-
based approaches, however, in which the entire operating system is run in a virtual
environment are considered out of the scope of this work.

Any tracing solution, regardless of the level of detail supported, relies on the consumption
of events, although the nature of the individual events of interest may vary. However, a
first rough distinction of techniques can be made based on the source of these events, which
is either hardware or software.

Each of the classes will be discussed individually in the following sections. Along with
this discussion, a non-exhaustive list of solutions implementing the individual technique is
presented.

Dynamic Tracing

Using

Software‐Generated Events

Using

Hardware‐Generated Events

Original Code

Preserving Approaches

Interposing

Code Execution

Modifying the

Environment

Injecting and

Handling Traps

Editing

Code

Original Code

Modifying Approaches

Figure 3.1: Classification of Dynamic Tracing Techniques

It is worth pointing out that the classification refers to techniques rather than solutions.
Although the majority of tools and solutions leverages a single such tracing technique only,
there are solutions that combine two or more of the presented techniques.

8 3. Classification of Dynamic Tracing Techniques

3.1 Using Hardware-Generated Events

Definition

A tracing technique that utilizes events generated by the CPU while executing unmodified
code.

Discussion

Current processors such as those of the IA-32 family offer features for generating and
recording a number of performance and tracing-related events. Although current IA-32
processors do not offer a means to specifically record subroutine calls, they do allow the
generation and recording of more fine grained events. A notable feature in this context
is last branch recording [Int07b], which records origin and target of the last branches
taken. Using this and similar processor features, a tracing solution could also deduce more
coarse-grained tracing information such as procedure-level traces.

As the collection of tracing information is based on dedicated hardware features, no code
has to be modified. In particular, although this technique may require handling of traps,
the code does not need to be augmented by trap-generating instructions.

Implementations

The facilities provided by CPUs that may be used for observing execution flow tend
to generate very fine-grained information, often on an instruction or branch-level basis.
Moreover, features such as last branch recording are rather new additions to the IA-32
instruction set and cannot be expected to be widely supported yet. Still, solutions for
procedure-level execution analysis can be identified to rely on such events, although their
number seems to be limited.

One of the most common tools that rely on hardware events are sampling profilers. However,
the use of sampling to obtain tracing and performance information is arguable due to the
inherent risk of impreciseness – a topic that has been discussed extensively in [Tam01].
Yet, these tools rely on frequent timer interrupts, which are clearly events generated by
hardware rather than induced by software. In the context of the NT kernel, a notable
example of a facility that uses sampling is the built in profiling facility [Neb00], which
serves as the basis for the kernrate tool.

Linux kernel version 2.6.25, which was in the state of a release candidate at the time of
writing, introduces an enhancement for ptrace which makes use of branch trace storage
[Int07b] on IA-32 processors [Mol08].

3.2 Using Software-Generated Events

Definition

A tracing technique that utilizes events caused by software. As unmodified code is assumed
not to generate the necessary events, adaptions to the code or the way the code is executed
is usually required.

Discussion

To allow a more precise discussion of the ideas behind this class of tracing techniques, this
class is further broken down into Original Code Preserving Approaches and Original Code
Modifying Approaches. These classes will be discussed separately.

3.3. Original Code Preserving Approaches 9

3.3 Original Code Preserving Approaches

Definition

A tracing technique that causes the generation of events necessary for the collection of
tracing information without performing in-place modifications on the original code.

Discussion

In order to provoke the generation of such events without modifying affected code, two
approaches can be taken. On the one hand, the execution flow of the code can be adapted
by changing its environment, e.g. by performing changes on data. On the other hand,
different code may be executed, which may or may not be derived from the original code.

The following two sections discuss both approaches.

3.4 Modifying the Environment

Definition

A tracing technique that does not rely on modifying code but rather on altering the
environment the code is executed in with the intent of adapting the behavior of the software
in a manner that allows tracing information to be gathered.

Discussion

The most prominent example of modifications on the environment that affect execution
flow is exchanging the values of memory locations storing addresses used for indirect calls.
By altering these locations, a branch into tracing code may be injected which, besides
collecting the desired information, delegates to the original target. Figure 3.2 illustrates
this idea.

Interceptor:

Caller: Callee:

Address of

Interceptor

Data

Code

Figure 3.2: Intercepting an indirect call

Whether this approach is applicable or not significantly depends on the individual software
to be inspected. Code that does not make use of indirect jumps or whose execution flow
cannot be adapted by data modifications in a sufficient manner may not be traceable with
such an approach. In contrast, a piece of software may explicitly have been designed for
allowing this kind of observation. Such software may, for example, make extensive use of
jump tables.

The majority of software may be expected to fall in between these two extremes – these
systems have not been explicitly designed for allowing tracing but for other reasons make
use of programming techniques that can be leveraged for this intent. Examples for such

10 3. Classification of Dynamic Tracing Techniques

techniques include Vtables as used by C++, COM [Box98] and other object oriented
languages and frameworks. Jump tables are very similar to Vtables in that they also store
function pointers, although they are usually unrelated to the concepts of object orientation.

A prominent example for a jump table is the Import Address Table (IAT) defined by the
Portable Executable File Format [Cor06b]. The role of the IAT is to serve as the connector
between dynamically loaded modules. Whenever a module such as a DLL imports routines
from different modules, its IAT will provide one slot for each import. When the respective
module is loaded, the loader will resolve these imports and will store the pointers to the
imported routines in the corresponding slots of the IAT.

The Procedure Linkage Table (PLT) defined by the Executable and Linking Format (ELF)
[Com95] employs a similar mechanism. Like the IAT, the PLT is used to allow function
calls to be made from one executable or shared object to another.

Without restricting this discussion to a specific software package that is to be instrumented,
the general applicability of such approaches is therefore hard to quantify, but can at least
be expected to be significantly below approaches relying on code modification.

Implementations

The NT kernel makes extensive use of function pointers. While most of these can be
expected not to be designed for the purpose of intercepting or tracing operations, some of
them are. A prominent example of such hooks are those used by Driver Verifier [Cor08c].

Microsoft Driver Verifier is a tool for detecting common flaws in drivers. To detect certain
erroneous operations, Driver Verifier has to observe a driver on a rather fine grained level.
Among the techniques used by Driver Verifier to attain this observation is to intercept a
number of routine calls. For this purpose, the NT kernel deliberately uses function pointers
at certain places with the intent of enabling Driver Verifier to hook into calls. An example
for such an operation is calling a driver, as implemented by IofCallDriver.

As listing 3.1 suggests, the global variable pIofCallDriver is NULL during normal opera-
tion. To allow hooking, the variable can be set to point to a routine such as IovCallDriver
(part of Driver Verifier). Besides pre- or postprocessing the call, such a routine will usually
delegate the call to IopfCallDriver.

1 NTSTATUS

2 FASTCALL

3 IofCallDriver(

4 IN PDEVICE_OBJECT DeviceObject ,

5 IN OUT PIRP Irp

6)

7 {

8 if (pIofCallDriver != NULL) {

10 //

11 // This routine will either jump immediately to

12 // IovCallDriver or IoPerfCallDriver.

13 //

14 return pIofCallDriver(

15 DeviceObject , Irp , _ReturnAddress ());

16 }

18 return IopfCallDriver(DeviceObject , Irp);

19 }

Listing 3.1: Implementation of IofCallDriver, WRK 1.2,
BASE\NTOS\IO\IOMGR\iosubs.c, line 2237

3.5. Interposing Code Execution 11

As empirical analysis reveals, IRPTracker [Res03], a tool that allows tracking of I/O Request
Packets (IRPs) traveling through the I/O subsystem, also leverages this (undocumented)
facility to gather tracing information.

Another common technique used for intercepting routine calls – either to adapt behavior or
to implement tracing – is Import Address Table Hooking [Rob03]. By replacing a function
pointer in the IAT with a pointer to an appropriate tracing routine, inter-module calls can
be traced. However, any calls not crossing a module boundary or using function pointers
obtained dynamically (such as by using GetProcAddress) cannot be easily intercepted
with IAT hooks. Notwithstanding these limitations, applied to core OS libraries such as
ntdll.dll or kernel32.dll, IAT hooks are a powerful technique for observing the interaction
between a user mode program and the operating system. As demonstrated by Leman
[Lem00], this approach is not only applicable in user mode but also in kernel mode.

Clowes [Clo01] has shown that a similar technique can be employed to leverage the ELF
PLT in order to intercept function calls.

A related, yet more specialized technique is hooking the System Service Descriptor Table of
the NT kernel, as first published in [RC97]. In a similar manner, calls to interrupt service
routines can be intercepted and delegated [HB05, PDB99]. However, these techniques
belong to the practices explicitly discouraged by Microsoft [Cor07]. More kernel mode
function pointer-based techniques have been discussed in the context of security research
in [MJ07].

The COM Universal Delegator [Bro99a, Bro99b] defines a method call interception frame-
work for the Component Object Model (COM). The basic idea behind this approach is to
leverage the fact that all methods of a COM interface are virtual and method invocations
are dispatched through a Vtable. In order to intercept all method invocations of a respective
interface, the pointers to the methods stored in the Vtable are replaced by pointers to
specific thunk routines. After preprocessing a call, a thunk routine will remove itself from
the stack and delegate the call to the original method implementation. Using return address
replacement and a thread local private stack, the framework is also capable of additionally
intercepting method returns in order to post-process a call.

A similar approach that additionally allows cross-process tracing of COM method invoca-
tions has been published in [Lem99].

As published, both approaches only apply to COM and user mode. However, the basic idea
of implementing virtual method dispatching by using Vtables is equally applied in other
programming environments. Therefore, this approach could be adapted to be applicable to
other scenarios and environments, including kernel mode Windows, as well.

3.5 Interposing Code Execution

Definition

A tracing technique that relies on interposing the code to be traced. Rather than letting
the affected regions of original code run natively, code is treated as data and used as
information for interpreting or derivation of new code.

Discussion

The basic idea behind these solutions resembles virtual machines in that they rely on
techniques such as interpreting code or using just in time compilation techniques to derive
new code from the original code. In both cases, the software gains the option to intercept
certain operations or to augment the code by instrumentation code on the fly.

12 3. Classification of Dynamic Tracing Techniques

The latter technique, fetching original code fragments, augmenting it and assembling new
code fragments is commonly referred to as dynamic compilation [CK94]. The resulting
code fragments, called translations, are encoded using the same instruction set as the
original code. This differs from dynamic binary translation [CM], which describes a similar
technique, yet involves translating between different instruction sets.

Dynamic compilation offers immense flexibility with regard to the level of detail at which
instrumentation can be performed. With regard to function boundary tracing, this flexibility
allows the user of such a solution to make a very specific choice of how a routine call should
be traced. On the one hand, the event of calling a routine could be captured by identifying
and instrumenting all code sequences that call the respective routine. On the other hand,
the tracing could be performed at the callee’s site, i.e. the event of a routine being called
could be captured by instrumenting the respective routine itself.

Both of these options have their own advantages and disadvantages. On the one hand, as
there is usually more than one potential caller of a given routine, tracing on the caller’s site
offers the ability to further distinguish between calls. For instance, by instrumenting specific
callers only, tracing can be scoped to affect only those routine calls performed from specific
locations in code. On the other hand, when all calls are to be captured – regardless of their
origin – a potentially large number of calls must be properly instrumented. In contrast to
that, callee-site instrumentation only requires the routine itself to be instrumented and
guarantees all calls to be captured.

In practice, however, caller-site tracing is often limited by the fact that determining all
potential callers of a given routine is challenging due to the existence of indirect jumps and
calls.

Implementation

Shade [CK94] was among the first tools to implement dynamic compilation. Rather than
being launched directly, an application that is to be instrumented is run via Shade. That is,
a user launches Shade and requests it to load the respective binary. Although this approach
prohibits attaching to a natively running process after the fact, it gives Shade tight control
over the execution of the target. Shade uses this control to avoid all execution of native,
unmodified code. Instead, Shade makes extensive use of dynamic compilation and only
executes the dynamically compiled, instrumented code.

As part of this dynamic compilation, Shade allows calls to trace functions to be injected
before certain instructions. Using such callbacks, tools such as call profilers and call graph
analyzers can be built on top of Shade.

By using appropriate caching mechanisms, Shade aims at compensating the additional over-
head of instrumentation and attains reasonable performance. Shade allows instrumentation
of user mode SPARC binaries and has been implemented for Solaris.

Dynamo [BDB00] focuses on dynamic optimization – its aim is to transparently improve
execution speed of just-in-time generated or even statically optimized code. The basic
strategy of Dynamo is to start off as a machine code interpreter. Observing program
behavior, Dynamo is capable of identifying hot, i.e. frequently executed code regions, which
it will attempt to optimize. Acting on the level of traces, i.e. sequences of consecutively
executed instructions, Dynamo makes use of dynamic compilation facilities similar to Shade
to create optimized versions of these traces, so called fragments. To account for the frequent
use of these code regions, these fragments are cached.

Dynamo has been implemented as a shared library for the PA-8000 architecture and
allows being attached to a running process. Although the approach would allow further

3.5. Interposing Code Execution 13

instrumentation for purposes such as tracing, Dynamo does not offer such facilities by
itself. Still, Dynamo has delivered the groundwork for DynamoRIO, which allows both
optimization and instrumentation of applications.

DynamoRIO [Bru04] is a dynamic code manipulation solution for user mode applications on
Linux and Windows. DynamoRIO allows runtime manipulation of unmodified binaries for
purposes such as tracing. DynamoRIO is similar to Shade in that it also avoids execution
of the original code altogether. The code is merely used as a blueprint for deriving, i.e.
dynamically compiling, new code. Like Shade, DynamoRIO also has to be loaded during
process startup, i.e. before any of the original code has become subject to execution.
Attaching to an already running process is thus not possible.

As part of the compilation, code can be specified to be augmented by additional instru-
mentation code. Moreover, in order to improve execution speed, DynamoRIO is capable of
applying certain optimizations to this code. Once compiled, the code fragments are placed
into a code cache, from which it can repeatedly be fetched.

Based on this setup, DynamoRIO is able to dynamically instrument an application without
the kernel or the application itself being aware of. DynamoRIO provides a rich set of
interfaces that allow execution observation of the software on various levels, making it a
system whose potential applications reach far beyond tracing on the level of routine calls.

However, to attain this high degree of flexibility, DynamoRIO, like Shade, has to have
tight control over the communication between the kernel and the process. Besides system
calls, this also includes interfaces such as user mode callbacks invoked by the kernel. While
uncommon on Unix systems, such callbacks play an important role on Windows NT.
Notwithstanding the complexity involved, DynamoRIO presents a solution that is capable
of interposing all such interfaces in order not to lose control over the process.

Valgrind [Net04] is a user mode instrumentation framework for Linux/IA-32. It is de-
signed to serve as the foundation for analysis tools such as profilers and memory checkers.
Technically, Valgrind translates the IA-32 machine code from the program to be run to
an intermediate representation called UCode, at which instrumentation is applied. The
instrumented intermediate code is then translated back to IA-32 machine code which is
finally executed. This instrumentation is performed lazily on a basic block level.

Similar to Shade and DynamoRIO, Valgrind attempts to avoid the execution of original
code. To attain the necessary degree of control over code execution, Valgrind has to be
attached during process startup as well. Like DynamoRIO, Valgrind interposes all major
communication channels between the operating system kernel and the actual application
code, including system calls and signal delivery.

Tools such as memcheck and cachegrind (part of the Valgrind Tools Suite [Val07]) have
shown the effectiveness and flexibility of Valgrind, which these tools are based on. The
fact that Valgrind has to be loaded into the affected process from the start is also of minor
concern in the context of such tools.

Considering Valgrind, Shade and DynamoRIO for the purpose of dynamic instrumentation
and tracing of running systems, however, the requirement of having to be loaded during
process startup can turn out to be an issue.

Pin [LCM+05] is an instrumentation solution that shares several ideas with the aforemen-
tioned solutions. Pin allows instrumentation of user mode Linux and Windows processes
and instruments code in a just in time manner. Yet, unlike Shade, DynamoRIO and
Valgrind, Pin is also capable of being attached to process after it has started and being
detached without the process having to be terminated.

14 3. Classification of Dynamic Tracing Techniques

While Pin is limited to user mode, Olszewski et al. [OMCB07] have brought the ideas
of just in time instrumentation and late attachment to kernel mode. Sharing basic ideas
with Pin, the presented solution allows instrumentation of kernel mode code on the Linux
operating system.

Both approaches perform instrumentation by injecting additional code sequences while
leaving the original code unmodified: Basic blocks are fetched from their original location,
instrumented, compiled, and placed into a code cache as they become subject to execution.
Whenever a new block is compiled, the branches from and to this block are updated. Any
branches pointing to blocks not yet compiled are linked to a special dispatcher stub which,
when invoked, will trigger the just in time instrumentation of the respective block.

Like the other solutions discussed in this section, Pin heavily relies on disassembly of the
code to be instrumented in order to identify the basic blocks.

However, having execution repeatedly branch between original code, dynamically compiled
code blocks, the dispatcher and instrumentation code presents an additional problem: The
contents of certain registers may have to be preserved and later restored whenever such a
branch is taken. One option is thus to save and restore all CPU registers in these situations,
which is guaranteed to be sufficient, yet, induces a non-negligible overhead. A more efficient,
yet more challenging approach to implement is thus to perform register liveness analysis –
a technique used by several solutions presented in this section, including Pin. By analyzing
the usage of registers beforehand, state saving can be limited to live registers, i.e. registers
known to be referenced at a later stage.

Moreover, for any dynamic compilation technique that allows late attachment to become
effective, there has to be at least one point where control is initially transferred to the
dispatcher of the instrumentation solution. Once having gained control, the dispatcher
can then direct further instrumentation. To achieve this initial takeover of control, these
approaches therefore need some jump aid. Pin uses the ptrace infrastructure for this purpose
while the solution proposed by Olszewski et al. facilitates an additional instrumentation
technique, namely using environment modification (see section 3.4): it replaces entries of
the system call table.

By writing the dynamically compiled code sequences to a new location and leaving the
original code untouched, the challenges and limitations of in place code modifications are
largely avoided. An implication of this approach, however, is that the process maintains
up to two copies of each block – the dynamically compiled, and the original code block.
Disregarding the increased memory requirements, this coexistence of instrumented and
uninstrumented code as well as the necessity for providing explicit entry points comes along
with both notable advantages and disadvantages.

On the one hand, it may be advantageous that the instrumented piece of code (i.e. a
sequence of instrumented basic blocks) is only executed when the execution flow originates
from a certain entry point, such as a system call. Tracing all memory allocations made
by a specific system call may be an example for such a use case. Not only are memory
allocations made by other system calls not traced, the overhead of instrumentation is also
only paid for those execution flows that are indeed of interest.

On the other hand, this scoping may well turn out to be a disadvantage. If, for example,
all memory allocations – regardless of whether made in the context of a system call or not –
are to be traced, such a solution can be inappropriate. More generally, the effectiveness
of the approach heavily depends on the area of interest, (i.e. the code of which execution
is to be traced), and the question whether it can be fully covered by one or more of such
entry points.

3.6. Original Code Modifying Approaches 15

Finally, solutions that do not support attachment to a running process do not fully qualify
as being dynamic in the sense expressed in the beginning of this section. Those solutions
that do allow late attachment usually require some kind of bootstrapping. The applicability
of such solutions is therefore also dependent on the flexibility of the jump aid solution
employed. The more entry points this solution allows, the greater the applicability of the
solution will be.

3.6 Original Code Modifying Approaches

Definition

In order to generate the events necessary for tracing, in-place modifications on the previously
unmodified, original code are performed. The code is augmented so that the necessary
events are issued. Such events may include traps or callback routines being invoked.

Discussion

Instrumenting code requires augmenting the code by additional instructions – instructions
that, for instance, capture tracing information. The basic problem all code modifying
solutions therefore have to face is how these additional instructions can be woven into the
original code. This question becomes even more relevant when instrumentation is to be
performed on a very fine grained level such as on the level of basic blocks or instructions.

Splicing code

Additional room for

instrumentation code

Additional room for

instrumentation code

Relocated code

sequence

Splicing code

Original code Trampoline

Figure 3.3: Runtime code splicing

One pattern encountered in several solutions is runtime code splicing [Thi99]. The idea of
runtime code splicing, illustrated in figure 3.3, is as follows: One or more instructions are
cut out of the original code. These instructions, along with the necessary instrumentation
code, are moved to a newly allocated code block, usually referred to as trampoline. The
crucial point to notice is that the trampoline usually is significantly larger than the piece of
relocated code. The original code and this code block are then spliced so that the execution
flows from the original code to the trampoline and back to the remainder of the original
code. Splicing can be applied on any level ranging from single instructions (i.e. only a
single instruction is relocated) to entire routines. However, the relocation of code sequences
has further ramifications such as the necessity to update all relative addresses used by the
relocated instructions.

Especially in the context of runtime code splicing, the differences between original code
modifying techniques and code interposing techniques seem to become blurred. The
characteristic difference, however, can be found in the fact that the original code remains
the scaffold for code splicing solutions: significant parts of the code may have been relocated,

16 3. Classification of Dynamic Tracing Techniques

yet, barring exceptions, execution flow is usually routed back to the original code at the
end of each such code block.

In contrast, the original code mostly loses its role as serving as the scaffold in the case
of solutions implementing code interposition: the default is that execution is not routed
back to original code when the end of such a dynamically allocated code block has been
reached – rather, execution is routed to the next dynamically compiled block. Execution
being routed back to original code is an situation that either never occurs or can at least
be considered a comparatively rare occurrence.

When used for tracing of routine calls, both caller-site and callee-site could be implemented
using code modification. In practice, however, instrumenting at the callee site is encountered
significantly more often.

Regarding existing instrumentation solutions in more detail, it is notable that a significant
number of solutions implementing code modification primarily rely on the use of trap-
generating instructions. Although many properties are shared among such trap-centric
solutions and other, non trap-centric code modification solutions, a separation into two
techniques is worth being made.

3.7 Injecting and Handling Traps

Definition

A tracing technique that relies on in-place modification of the original code. In order to
be able to interrupt, control, or trace execution, trap-generating instructions are injected
into the original code. Using an appropriate trap handler, the events generated by such
instructions can be handled accordingly.

Discussion

Injecting trap-generating instructions like int 3 on IA-32 is the classical approach taken
by debuggers to implement breakpoints. As dealing with traps is at the core of hardware
and an operating system’s capabilities, this approach can be expected to be feasible on a
very wide range of operating systems and hardware architectures.

On variable-length instruction set architectures such as the the IA-32, relying on trap-
generating instructions has the additional advantage that such instructions can be as short
as one byte. With such short instructions, several of the challenges concerning runtime
code modification can be circumvented – a topic that will be discussed in more detail in
section 4. A drawback of this approach, however, is the non-negligible overhead associated
with the handling of traps.

Implementations

As mentioned before, debuggers are the most prominent example of tools using this
technique for implementing breakpoints. Current Windows debuggers such as WinDBG
also offer tracing facilities, which make them relevant in this discussion. However, as their
name already suggests, breakpoint commands, which are used for such tracing purposes,
also rely on handling of debug traps.

Beyond the realm of debuggers, usage of this technique for tracing purposes can be found
in Dynamic Trace, a diagnostic facility introduced by OS/2 Warp 4 fixpack 4 [Cor97].
By injecting an int 3 instruction and handling the trap issued by these instruction
appropriately, the DosDynamicTrace system call allows intercepting procedure calls in
device drivers or the kernel. Using expressions formulated in a specialized language, this

3.8. Editing Code 17

infrastructure along with the tool dtrace1 allows calls as well as local variable contents to
be captured and logged.

Inspired by Dynamic Trace, Dynamic Probes (DProbes) implements the same approach on
Linux [Moo01]. DProbes allows placing probepoints on arbitrary code locations in both
kernel and user mode code. Like Dynamic Trace, DProbes implements probepoints by
injecting an int 3 instruction and handling traps appropriately. The replaced instruction
is later either single-stepped or emulated. DProbes has also adopted the idea of using a
little language for defining the actions to be taken whenever a probepoint becomes active.

KernInst [TM99, Tam01] is a dynamic kernel instrumentation solution for Solaris and
Linux that implements runtime code splicing. It has been designed and implemented to run
on unmodified kernels and can be loaded dynamically. Using splicing techniques, KernInst
allows very fine-grained instrumentation – not only procedures and basic blocks, but also
individual instructions can be instrumented.

On IA-32 hardware, KernInst uses injection of trap-generating instructions for implementing
code splicing. Designed as a generic instrumentation solution, KernInst is capable of being
used for several purposes, performance profiling and tracing being amongst them.

DTrace [CSL04] is a dynamic instrumentation solution that has been originally developed for
Solaris but has meanwhile been ported to other operating systems as well, including Mac OS
X and FreeBSD. Part of DTrace is the Function Boundary Tracing Provider, which allows
dynamic tracing of procedures. Like KernInst, the IA-32 implementation of DTrace relies on
the injection of trap generating instructions. Instrumenting a procedure works by replacing
one of the first instructions of a procedure by a trap-generating instruction. For this to work,
DTrace requires a procedure to begin with the common prolog push ebp; mov ebp, esp.
When the procedure is executed, DTrace will handle the trap and trace the event. In
order to continue execution, the replaced instruction is emulated and control is transferred
back to the remainder of the traced routine. In a similar manner, DTrace allows exit
tracing by replacing ret, leave or pop ebp instructions with a trap-generating instruction
and handling the trap appropriately. To allow such instrumentation, DTrace relies on
information obtained from the disassembly of the routine. Among the other features and
providers offered by DTrace, it also defines a language for expressing the actions to be
taken in case of a trace event.

Kprobes is a facility provided by the Linux kernel that allows hooking of kernel mode code
[MPK06] by using traps. As such, KProbes is not a tool in itself but rather serves as the
basis for other debugging or monitoring tools such as Systemtap [Var05]. Kprobes is part
of the Linux kernel 2.6 and, like DTrace, has been designed to work reliably both on single
and multiprocessor systems.

3.8 Editing Code

Definition

A tracing technique that relies on in-place modification of the original code. To intercept
and trace execution at certain points, additional instrumentation code is incorporated into
the original code.

In contrast to the technique of Injecting and Handling Traps, in-place modifications are
not limited to injecting trap-generating instructions.

1Distinguishable only by capitalization, this tool is entirely unrelated to DTrace.

18 3. Classification of Dynamic Tracing Techniques

Discussion

Incorporation of instrumentation code is mostly performed by injecting jumps into the
original code which divert execution to the instrumentation code and finally back to the
original code.

Although functionally similar to the idea of Injecting and Handling Traps, the primary
benefit of this approach is that jumps are significantly more lightweight in terms of
performance than the issuing and handling of a trap.

The downside of this technique, however, is the increased danger of runtime code
modification-caused hazards – a topic that will be discussed in more detail in section
4.

Implementations

The variable-length instruction set of the IA-32 architecture leads to several complications
regarding code editing. On the one hand, disassembly requires significantly more attention
than on a fixed-length instruction set architecture. This issue is discussed in more detail in
section 4.4.7.

On the other hand, the IA-32 instruction set includes instructions as short as one byte.
Instrumenting code sequences including such single byte instructions by injecting a jump
instruction may turn out to problematic. The shortest jump instruction offered by this
architecture occupies two bytes and may thus lead to requiring more than one instruction
to be replaced. However, as will be discussed in more detail in section 4.4.3, such practice
can lead to issues with respect to concurrency and preemption.

Solutions such as KernInst and DTrace circumvent these challenges by reverting to trap-
based solutions on the IA-32 architecture. On SPARC, however, which is a fixed length
instruction set architecture [Mic07], both KernInst and DTrace rely on embedding jump
instructions into existing code. In order to allow safe runtime instrumentation, in-place
code modifications are restricted to comprising a single instruction only. KernInst uses
these jumps to splice basic blocks while DTrace uses the jumps to direct execution flow to
trampolines, which in turn transfer control into DTrace [CSL04].

Paradyn [HMC94] is an early implementation of an instrumentation solution that uses
code editing in conjunction with runtime code splicing. Targeted at collecting fine-grained
performance measurements for parallel applications, Paradyn injects calls to trampolines2

into the original code. To clear space for placing jumps to these trampolines, Paradyn
relocates one or more instructions to the trampoline. Once execution flow has reached
the trampoline, these relocated instructions along with the respective instrumentation
code is executed, before execution is redirected back to the remainder of the original code.
Moreover, Paradyn allows being attached to a running process.

Built on top of Paradyn, Dyninst [BH00] provides a framework and an object oriented API
for controlling and instrumenting processes.

GILK [Pea00, PKFH02] is an instrumentation tool for the Linux kernel. Similar to KernInst,
GILK implements runtime code splicing and allows instrumentation on basic block level.
Unlike KernInst, however, GILK uses jumps rather than trap handling techniques to divert
execution flow on IA-32 systems. As will be discussed in section 4.4.3, GILK only works on
non-preemptable Linux kernels and does, in its current state, not support SMP systems.

2Paradyn uses two types of trampolines, base trampolines and mini trampolines. However, the differences
between these types of trampolines are irrelevant to this discussion.

3.8. Editing Code 19

Another implementation of code editing on IA-32 is Detours [BH99]. Although limited to
user mode code, Detours is noteworthy for providing a lightweight, yet widely applicable
solution that poses only little requirements on the code to be instrumented. Detours can
be used to either redirect execution to an alternative implementation of a routine or to
intercept function entry. In both cases, Detours replaces one or more instructions located
at the very beginning of a function in order to preprocess or redirect a call. The replaced
instructions are moved to a trampoline, which, after preprocessing has been finished, is
used to resume execution. Potentially replacing multiple instructions, Detours is, however,
exposed to a number of issues that are discussed in section 4.4.

Vulcan [SEV01] is similar to GILK in that it also implements runtime code splicing.
Although Vulcan is limited to user mode Windows, it stands out by the fact that it allies
static and dynamic instrumentation techniques for a number of different architectures
(IA-32, IA-64, MSIL) in a single tool.

Djprobe [Mas07] is an enhancement of Kprobes that uses jumps rather than traps to
instrument routines. In comparison to Kprobes, the applicability of djprobe is slightly more
restricted. Yet, due to the usage of jumps rather than traps, djprobe performs significantly
better than Kprobes [Hir05], which is also the main motivation behind this approach.

Djprobe is also noteworthy for thoroughly addressing safety issues related to multiple
instruction modification and patching of potentially non-quiescent code. A key aspect of
their algorithm for preventing preemption-related hazards is to rely on freeze_processes.
This routine, which is primarily used for system suspension, puts all user mode processes
as well as all kernel threads that have registered as being freezable effectively to sleep
[Wys08]. However, the paper does not discuss the safety of this approach in the existence
of non-freezable kernel threads, i.e. threads that have not registered as being freezable but
may still be affected by certain code patches.

20 3. Classification of Dynamic Tracing Techniques

3.9 Concluding Remarks

The tracing solutions presented as part of the discussion of tracing techniques vary in both
their implementation as well as in the individual aims they pursue. A general assessment is
thus not easily possible. Yet, moving the focus to function boundary tracing in the context
of the Windows NT kernel and the applicability of the techniques in this regard, allows a
finer analysis of the strengths and weaknesses of these approaches to be made.

Solutions modifying the environment generally require the least effort to implement and avoid
the challenges associated with code modification. Notwithstanding their lightweightness and
robustness, the applicability of these approaches is limited. The NT kernel includes several
areas of potential applications [MJ07] where extensive use of function pointers is made, yet
the share of functions traceable with this approach is, although hardly quantifiable, rather
low.

In sharp contrast to this, solutions interposing code execution are extremely versatile and
universally applicable. The fact that these solutions allow instrumentation on a much finer
level than required for function boundary tracing should also be considered positive. As
indicated before, however, the achilles heel of these solutions is the bootstrapping. To
successfully interpose code execution, the tracing facility must either be present from the
start of the respective program on or it must be injected and be provided some form of
jump aid. However, requiring the tracing facility to be present during program startup
has to be considered a contradiction to the tracing solution being truly dynamic. In the
second case, the tracing solution can only be as good as its jump start facility is – the more
limited the number of potential entry points is, the more limited will the applicability of
such a solution be.

Solutions relying on injecting and handling traps or editing code share many properties. They
do not reach the versatility of interposition solutions but compensate this shortcoming by
usually being less intrusive and providing a larger number of potential instrumentation/entry
points. Such solutions are, however, exposed to the challenges of dynamic code modification
as discussed in section 4. Addressing all of these problems is vital for providing a code
modifying solution that can be considered safe enough for productive use.

The main advantage of avoiding traps and to favor code editing techniques is performance.
Trap handling introduces a significant overhead which has to be paid for each event. The
cost of issuing and handling breakpoints has been reported to be even higher in case of the
operating system running in a hypervisor such as Xen [Mas07].

21

4 Challenges Of Runtime Code
Modification

This section discusses various challenges imposed by the CPU and operating system on
runtime code modification. Unless stated otherwise, the discussion will focus on the Intel
IA-32 architecture and applies to Windows NT kernel mode only.

Adopting the nomenclature suggested by the Intel processor manuals, code writing data to
memory with the intent of having the same processor execute this data as code is referred
to as self-modifying code [Int07c].

On SMP machines, it is possible for one processor to write data to memory with the intent
of having a different processor execute this data as code. This process if referred to as
cross-modifying code [Int07c].

For the remainder of this work, the act of executing self-modifying code or cross-modifying
code is also referred to as runtime code modification.

4.1 Memory Model

In order to implement self-modifying or cross-modifying code, a program must be able
to address the regions of memory containing the code to be modified. Moreover, due to
memory protection mechanisms, overwriting code may not be trivially possible.

The IA-32 architecture offers three memory models – the flat, segmented and real mode
memory model [Int07a]. As Windows NT relies on the flat memory model, only the flat
memory model is examined in this work.

Whenever the CPU fetches code, it addresses memory relative to the segment mapped
by the CS segment register. In the flat memory model, the CS segment register, which
refers to the current code segment, is always set up to map to linear address 0. In the same
manner, the data and stack segment registers (DS, SS) are set up to refer to linear address
0.

It is worth mentioning that AMD64 has retired the use of segmentation [Dev07] and the
segment bases for code and data segment are therefore always treated as 0.

Given this setup, code can be accessed and modified on IA-32 as well as on AMD64 in the
same manner as data.

4.2 Memory Protection

One of the features enabled by the use of paging on IA-32 systems is the ability to enforce
memory protection. Each page can specify restrictions to which operations are allowed to
be performed on memory of the respective page.

In the context of runtime code modification, memory protection is of special importance as
memory containing code usually does not permit write access, but rather read and execute
access only. A prospective solution thus has to provide a means to either circumvent such
write protection or to temporarily grant write access to the required memory areas.

As other parts of the image are write-protected as well, memory protection equally applies
to approaches that modify non-code parts of the image such as the Import Address Table.

22 4. Challenges Of Runtime Code Modification

Some instrumentation techniques rely on code generation. Assuming Data Execution
Prevention [Cor06a] has been enabled, it is vital for such approaches to work prop-
erly that any code generated is placed into memory regions that grant execute access.
While user mode implementations can rely on a feature of the RTL heap (i.e. using
the HEAP_CREATE_ENABLE_EXECUTE when calling RtlCreateHeap) for allocating executable
memory, no comparable facility for kernel mode exist – a potential instrumentation solution
thus has to come up with a custom allocation strategy.

4.3 Jump distances

A tracing solution may employ dynamic generation of branching instructions in order to
splice basic blocks and thus to adapt execution flow. For certain approaches, the offset
between the branching instruction itself and the jump target may be of significant size. In
such cases, the software has to make sure that the branch instruction chosen does in fact
support offsets at least as large as required for the individual purpose.

The IA-32 instruction set offers a number of branch instructions which, among other
characteristics, differ in the maximum jump distance they support. As an example, a
near jump with immediate operand can address targets with an offset relative to the
current instruction pointer that can be expressed by a signed 32 bit value. Short jumps, in
comparison, support only 8 bit offsets.

However, as those jump instructions that support the largest distances also tend to be the
largest in size, it is often advantageous to use a smaller, yet more restricting jump. In case
the instrumentation solution is basically rewriting the basic block and its size is allowed
to change, it may opt to replace a jump instruction by an instruction supporting a larger
displacement. But in case modifications are performed in-place and the size of the basic
block is therefore limited, this technique can usually not be applied.

A common technique to overcome this issue is to make use of trampolines [TM99]. To
support larger jump offsets than the actual instruction supports, a stopover is introduced:
Execution jumps from the origin to a trampoline, which is a snippet of code consisting of a
single jump instruction only. Taking this jump, execution is then redirected to the ultimate
target. If the trampoline can be located close to the origin, the injected branch instruction
only has to support a very short distance.

On Windows NT, Tamches and Miller [TM99] suggest overlaying initialization code, which
can be assumed not to be required any more, yet being close to the code locations being
instrumented, with trampolines. However, this approach fails to take into consideration
that such code regions (i.e. routines such as DriverEntry) are commonly located in paged
memory. All accesses to these memory regions therefore have to occur at Interrupt Request
Level (IRQL) below DISPATCH_LEVEL in order not to risk a bugcheck. Yet, as the IRQL at
which such trampolines might be executed is hard to determine beforehand, adherence to
this restriction may not be guaranteed. As such, the applicability of this approach has to
be expected to be limited.

4.4 Safety Concerns

As indicated by the previous section, the act of treating code as data and performing
modifications on code is straightforward. The question remaining to be solved, however, is
the safety of such actions, especially in the presence of multiple processors.

Runtime code modification in general can be used for a variety of purposes and a discussion
of the overall safety of such actions is out of scope of this work. Therefore, this section

4.4. Safety Concerns 23

concentrates on the safety in the specific context of using Runtime Code Patching with the
intent of allowing routines to be traced.

Given a multiprogramming environment, an algorithm for dynamic instrumentation using
runtime code modification shall be considered safe in the context of this work if its usage
guarantees that at any point in time, a routine is either run unchanged, or is run in an
instrumented state.

Running a routine in an instrumented state includes:

• Calling a pre-hook routine.

• Running an execution path equivalent to the execution path that would have been
taken in case of running the unmodified routine.

• Calling a post-hook routine. (Optional)

• Running any necessary thunking code.

The execution path of an instrumented routine is considered equivalent to the execution
path of an unmodified routine if it includes all non-noop instructions of the unmodified
routine (in the same order) and any additional instructions do not affect the outcome
of the routine in terms of return value, output-parameters and modified memory. Noop
instructions shall include the instruction nop as well as any other instructions that carry
out no semantically useful work such as mov edi, edi.

The cited criteria should serve as a practical guideline for the evaluation of instrumentation
approaches in the remainder of this work. Both the discussion of whether these criteria
are in fact sufficient for a solution to work correctly under all possible circumstances and
proving whether or not a potential instrumentation algorithm meets these criteria is out of
scope of this work. Rather, the remainder of this section will discuss common issues in the
light of these criteria and their individual ramifications.

The range of potential issues discussed in the following sections is a summary of what
has been discussed by the publications of existing instrumentation solutions presented in
section 3 as well as issues experienced with existing tools.

Although not aiming to be a complete list of possible issues, an algorithm not being prone
to any of these issues while meeting the criteria above should be able to be considered safe
for practical usage.

It is worth noting that this section does not address any issues not applying to the IA-32
architecture but that may still be relevant on other architectures such as issues regarding
out of order instructions, delay slots or non-transparent instruction caches.

4.4.1 Cross-Modifying Code and Atomicity

Performing modifications on existing code is a technique commonly encountered among
instrumentation solutions. Assuming a multiprocessor machine, altering code brings up
the challenge of properly synchronizing such activity among processors.

As stated in section 4.1, code can be modified in the same manner as data. Whether
modifying data is an atomic operation or not, depends on the size of the operand. If the
total number of bytes to be modified is less than 8 and the target address adheres to
certain alignment requirements, current IA-32 processors guarantee atomicity of the write
operation [Int07c].

24 4. Challenges Of Runtime Code Modification

If any of these requirements do not hold, multiple write instructions have to be performed,
which is an inherently non-atomic process. It is, however, crucial to notice that even in
situations where using atomic writes or bus locking on IA-32 or AMD64 would be feasible,
such practice would not necessarily be safe as instruction fetches are allowed to pass locked
instructions [Int07c].

Although appealing, merely relying on the atomicity of store operations must therefore in
many cases be assumed to be insufficient for ensuring safe operation.

The exact behavior in case of runtime code modifications slightly varies among different
CPU models. On the one hand, guarantees concerning safety of such practices have been
lessened over the evolvement from the Intel 486 series to the current Core 2 series [Int07c].
On the other hand, certain steppings of CPU models exhibit defective behavior in this
regard [Int02].

Due to this variance, the exact range of issues that can arise when performing code
modifications is not clear and appropriate countermeasures cannot be easily identified. As
described in several errata, [Int02], cross-modifying code not adhering to certain coding
practices described later, can lead to unexpected execution behavior, which may include the
generation of exceptions.

The route chosen by the Intel documentation is thus to specify an algorithm that is
guaranteed to work across all processor models – although for some processors, it might be
more restricting than necessary [Int07c].

For cross-modifying code, the suggested algorithm makes use of serializing instructions.
The role of these instructions, cpuid being one of them, is to force any modifications to
registers, memory and flags to be completed and to drain all buffered writes to memory
before the next instruction is fetched and executed [Int07c].

Quoting the algorithm defined by Intel in [Int07c]:

(* Action of Modifying Processor *)
Memory_Flag <- 0; (* Set Memory_Flag to value other than 1 *)
Store modified code (as data) into code segment;
Memory_Flag <- 1;

(* Action of Executing Processor *)
WHILE (Memory_Flag != 1)

Wait for code to update;
ELIHW;

Execute serializing instruction;
Begin executing modified code;

To further complicate matters, the IA-32 architecture uses a variable-length instruction
set. As a consequence of that, additional problems not yet addressed may occur if the
instruction lengths of unmodified and new instruction do not match. Two situations may
occur

• The new instruction is longer than the old instruction. In this case, more than
one instruction has to be modified. Modifications straddling instruction boundaries,
however, are exposed to an extended set of issues discussed in section 4.4.3.

4.4. Safety Concerns 25

• The new instruction is shorter than the old instruction. The ramifications of this
situation depend on the nature of the new instruction. If, for instance, the instruction
is an unconditional branch instruction, the subsequent pad bytes will never be
executed and can be neglected. If, on the other hand, execution may be resumed at
the instruction following the new instruction, the pad bytes must constitute valid
instructions. For this purpose, a sled consisting of nop instructions can be used to fill
the pad bytes.

The algorithm defined by Intel for cross-modifying code ensures that neither the old
nor the new instruction is currently being executed while the modification is still in
progress. Therefore, when employing this algorithm, replacing a single instruction
by more than one instruction can be considered to be equally safe to replacing an
instruction by an equally-sized instruction.

It is worthwhile to notice that regardless which situation applies for instrumentation, the
complementary situation will apply to uninstrumentation.

4.4.2 Concurrent Execution

A typical user mode process on a Windows system can be expected to have more than one
thread. In addition to user threads, the Windows kernel employs a number of system threads.
Given the presence of multiple threads, it is likely that whenever a code modification is
performed, more than one thread is affected, i.e. more than one thread is sooner or later
going to execute the modified code sequence.

The basic requirement that has to be met is that even in the presence of a preemptive, multi
threaded, multiprocessing environment, an instrumentation solution has to ensure that any
other thread either does not run the affected code at all, runs code not yet reflecting the
respective modifications or runs code reflecting the entire set of respective modifications.

On a multiprocessor system, threads are subject to concurrent execution. While one thread
is currently performing code modifications, another thread, running on a different processor,
may concurrently execute the affected code.

If only a single instruction is to be modified and the cited algorithm for cross-modifying
code is used, concurrent execution, preemption and interruption should not be of concern.
Any other thread will either execute the old or new instruction, but never a mixture of
both.

However, the situation is different when more than one instruction is to be modified. In
this case, a different thread may execute partially modified code.

Although code analysis may indicate certain threads not to ever call the routine comprising
the affected code, signals or Asynchronous Procedure Calls (APCs) executed on this thread
may. Therefore, a separation in affected and non-affected threads may not always be
possible and it is safe to assume that all threads are potentially affected.

4.4.3 Preemption and Interruption

Both on a multiprocessor and a uniprocessor system, all threads running in user mode
as well as threads running in kernel mode at IRQL APC LEVEL or below are subject
to preemption. Similarly, for a thread running at DISPATCH LEVEL or Device IRQL
(DIRQL), it is also possible to be interrupted by a device interrupt [SR04]. As these
situations are similar, only the case of preemption is discussed.

If only a single instruction is to be modified, preemption and interruption may not be
problematic. If, however, multiple instructions are to be adapted, the ramifications of

26 4. Challenges Of Runtime Code Modification

preemption in this context are twofold. On the one hand, the code performing the
modification may be preempted while being in the midst of a multi-step runtime code
modification operation:

• Thread A performs a runtime code modification. Before the last instruction has
been fully modified, the thread is preempted. The instruction stream is now in a
partially-modified state.

• Thread B begins executing the code that has been modified by Thread A. In case
instruction boundaries of old and new code match, the instruction sequence that
is now run by Thread B should consist of valid instructions only, yet the mixture
of old and new code may define unintended behavior. If instruction lengths do not
match, the situation is worse. After Thread B has executed the last fully-modified
instruction, the CPU will encounter a partially-overwritten instruction. Not being
aware of this shift of instruction boundaries, the CPU will interpret the following
bytes as instruction stream, which may or may not consist of valid instructions. As
the code now executed has never been intended to be executed, the behavior of
Thread B may now be considered arbitrary.

In order to avoid such a situation from occurring, an implementation can disable preemption
and interruption by raising the IRQL above DIRQL during the modification process.

On the other hand, the code performing the code modification may run uninterrupted, yet
one of the preempted threads might become affected:

• Thread A has begun executing code being part of the instruction sequence that is
about to be modified. Before having completed executing the last instruction of this
sequence, it is preempted.

• Thread B is scheduled for execution and performs the runtime code modification.
Not before all instructions have been fully modified, it is preempted.

• Thread A is resumed. Two situations may now occur – either the memory pointed
to by the program counter still defines the start of a new instruction or – due to
instruction boundaries having moved – it points into the middle of an instruction.
In the first case, a mixture of old and new code is executed. In the latter case, the
memory is reinterpreted as instruction stream. In both cases, the thread is likely to
exhibit unintended behavior.

One approach of handling such situations is to prevent them from occurring by adapting
the scheduling subsystem of the kernel. However, supporting kernel preemption is a key
characteristic of the Windows NT scheduler – removing the ability to preempt kernel threads
thus hardly seems like an auspicious approach. Regarding the Linux kernel, however, it is
worth noting that kernel preemption is in fact an optional feature supported on more recent
versions (2.6.x) only [BC05]. As a consequence, for older versions or kernels not using this
option, the situation as described in the previous paragraph cannot occur. GILK [Pea00],
which has been mentioned before for being an instrumentation tool relying on being able
to replace multiple instructions in fact relies on a kernel not supporting kernel preemption.

A more lightweight approach to this problem relies on analysis of concurrently running as
well as preempted threads. That is, the program counters of all threads are inspected for
pointing to regions that are about to be affected by the code modification. If this is the
case, the code modification is deemed unsafe and is aborted. Needless to say, it is crucial

4.4. Safety Concerns 27

that all threads are either preempted or paused during this analysis as well as during the
code modification itself. As the thread performing the checks and modifications is excluded
from being paused and analyzed, it has to be assured that this thread itself is not in danger
of interfering with the code modification.

In a similar manner, the return addresses of the stack frames of each stack can be inspected
for pointing to such code regions. Stack walking, however, is exposed to a separate set of
issues that are discussed in section 4.4.5.

Rather than aborting the operation in case one of the threads is found to be negatively
affected by the pending code modification, a related approach is to attempt to fix the
situation. That is, the program counters of the affected threads are updated so that they
can resume properly.

One example for a user-mode solution implementing this approach is Detours [BH99]. Before
conducting any code modification, Detours suspends all threads a user has specified as
being potentially affected by this operation. After having completed all code modifications,
all suspended threads are inspected and their program counters are adapted if necessary.
Not before this step has completed, the threads are resumed.

4.4.4 Basic Block Boundaries

Another issue of multiple instruction modification is related to program flow. Whenever a
sequence of instructions that is to be altered spans multiple basic blocks [AVAU88], it is
possible that not only the first instruction of the sequence, but also one of the subsequent
instructions may be a branch target. When instruction boundaries are not preserved by
the code modification step, the branch target might fall into in the midst of one of the
new instructions. Again, such a situation is likely to lead to unintended program behavior
[TM99].

Identifying basic blocks and thus any potential branch targets requires flow analysis.
However, especially in the case of optimized builds, it is insufficient to perform an analysis
of the affected routine only as blocks might be shared among more than one routine. In
such cases, a routine does not consist of a contiguous region of code but may be scattered
throughout the image. Therefore, it is crucial to perform flow analysis on the entire image.
But even in this case, the existence of indirect branches may render a complete analysis
impossible in practice.

The idea of creating a control flow graph in order to avoid overwriting a basic block
boundary has been implemented by several solutions, including GILK [Pea00] and KernInst
[Tam01], which analyzes the entire kernel image. In a similar manner, djprobe [Mas07]
performs static code analysis to detect such issues. Both instrumentation tools rely on
overwriting multiple instructions and are therefore exposed to this issue.

Another situation where an instrumentation solution may run into the danger of overwriting
basic block boundaries is the instrumentation of very short routines. If the routine is shorter
(in terms of instruction bytes occupied) than the instructions that need to be injected in
order to instrument the routine, the first basic block(s) of the subsequent routine may be
overwritten.

4.4.5 Stack Walking

As indicated before, walking the stacks of all threads is a technique that can be employed
to check whether certain code modification operations can be expected to be safe or not.
However, for such checks to be reliable, it has to be assured that the stack traces are proper,
i.e. that no frames are missed.

28 4. Challenges Of Runtime Code Modification

If correct debugging symbol information is available for all modules involved in a stack walk,
a stack trace can be expected to be reliable. In practice, however, debugging information is
often not available, so that symbol-less approaches have to be taken.

While reliably obtaining proper stack traces without using debugging symbols may in
fact be viable on certain architectures and platforms, including Windows NT/AMD64
with its unified calling convention, it turns out to be rather problematic on the IA-32
platform. To walk the stack without debugging symbols, the frame pointer chain can
be attempted to be traversed. This approach, however, is thwarted as soon as one of
the modules involved makes use of certain compiler optimizations such as frame pointer
omission. As a consequence, this technique can usually not be expected to yield reliable
results.

The dynamic updating solutions Ksplice [Arn08] and Dynamos therefore implement a more
conservative, debugging symbol-less approach of walking the stack: Starting from the top
of the stack, each double word (on IA-32) is inspected until the base address of the stack
has been reached. Whenever a double word contains a value that, interpreted as a pointer,
refers to a region in memory occupied by code, this address is assumed to be a return
address of a stack frame. Although this assumption may be faulty and is likely to lead to
false positives, this technique gives these solutions the ability to perform certain checks on
the routines these addresses point to.

Although the latter approach seems auspicious, there is another inherent problem related to
the overall approach of analyzing the stacks of all threads. For such analysis to be reliable,
it is of utmost importance to analyze all stacks. In particular, this includes the stacks of
all preempted threads. In the normal case, enumerating this list is possible by walking the
list of threads maintained by the kernel. In user mode Windows NT, such enumeration can
be done using the Toolhelp API, in kernel mode, the list of KTHREAD structures can be
traversed.

However, this approach neglects the fact that in addition to each kernel-allocated thread
being associated a stack, there may be additional, custom allocated stacks. Fibers, for
instance, as offered by Windows NT in user mode, offer such a facility. Each fiber maintains
a separate stack. Yet, as there is no 1:1 mapping between these stacks and kernel-allocated
stacks, it is not possible to enumerate and identify such user-allocated stacks by using the
thread-enumeration facilities discussed above. In fact, locating user-allocated stacks must
be expected to not be possible without the individual program cooperating.

In NT kernel mode, the practice of maintaining user-allocated stacks may not be very
common. Moreover, it is explicitly discouraged by Microsoft [Cor07]. Still, the possibility
of drivers using such techniques cannot be ruled out.

Regarding stack walking, custom allocated stacks pose a serious concern. As they are
equally subject to preemption-related issues as kernel-allocated stacks are, it is crucial for
such stacks to be analyzed as well.

4.4.6 Life Cycle Management of Dynamically Allocated Code

A common technique encountered among dynamic instrumentation solutions is using
trampolines, i.e. little chunks of dynamically generated code that is mostly specific to
a single instrumentation point. Such code blocks, but also other code that has been
dynamically loaded, is subject to proper life cycle management.

As soon as an instrumentation point is revoked and the affected routine is reverted to its
original state, code blocks specific to this instrumentation point are not needed any more.
However, due to the existence of concurrently running as well as preempted threads, it is

4.4. Safety Concerns 29

not trivial to judge whether unloading and freeing the affected memory is indeed a safe
operation. For concurrency, another CPU may currently be running the code regions in
question. Even more likely is the case that one of the preempted threads is referring to
instructions of the affected code chunk. Depending on the individual algorithm and the
question whether or not the code block may contain call instructions, the program counter
of the preempted thread as well as the return addresses of any of the thread’s stack frames
may still point to the code block in question. Unloading and freeing the trampoline would
in this case inevitably lead to faults or otherwise unintended program behavior.

Detours [BH99] attempts to avoid such situations by analyzing the state of other threads.
After suspending all affected threads – the distinction between affected and non-affected
threads has to be made by the user of the library – Detours checks whether any thread
refers to the trampoline that is to be freed. If this is the case, the instruction pointer of
this thread is modified to point to the original code again, which will have been restored
before the suspended threads are resumed.

However, by inspecting the current instruction pointer (i.e. the top stack frame) of the
threads only, Detours fails to consider the possibility of lower stack frames being affected:
Under certain circumstances, it is possible that Detours will relocate a call instruction into
the trampoline. In this case, the following situation may occur:

• Thread A enters the trampoline, executes the call and enters the called routine.

• Thread B removes the detour. This includes freeing the respective trampoline.

• Thread A returns from the called routine and will attempt to continue execution in
the trampoline. As the trampoline has already been freed, an access violation or
undefined behavior will occur.

MDL [HMG+97], part of the Paradyn tools, therefore analyzes all stack frames before
freeing a trampoline. In case an affected stack frame has been identified, the free operation is
delayed and retried later. This analysis is significantly more thorough and avoids situations
such as the one Detours suffers from. Yet, the viability of this approach depends on whether
it is possible to always perform a proper stack walk of the affected threads – a topic that
has been discussed in section 4.4.5.

KernInst [TM99], which makes extensive use of dynamically allocated code blocks for
trampolines and code patches, attempts to avoid lifecycle problems from occurring by
delaying free operations. Solaris, like Windows NT, both supports SMP and kernel thread
preemption. Short of being able to identify whether a preempted thread or concurrently
running thread is still referring to the affected code, KernInst does not immediately free
the memory when the instrumentation is revoked. Rather, it waits three seconds, during
which it expects all affected threads to have left the critical region before finally freeing
the memory. This expectation is backed by the fact that all operations performed within
trampolines are non-blocking. Yet, this strategy is only able to minimize rather than to
eliminate the likeliness of freeing code blocks that are still in use.

Attempts to solve this issue by using reference counting, as suggested by [Tam01], are
exposed to a hen-egg problem: When entering a dynamically allocated code block, a
counter-incrementing instruction is executed, signaling that the block is in use. Before
leaving the block, the counter is decremented. As soon as the associated instrumentation
has been revoked and the counter drops to zero, the block may be freed. The problem
of this approach lies in the fact that decrementing the counter and taking the jump to
leave the block cannot be performed in a single, atomic operation. The affected thread
may successfully have decremented the counter to zero, but is preempted before having

30 4. Challenges Of Runtime Code Modification

been able to take the jump to leave the block. Referring to the reference counter, the block
is now in a state that allows it to be freed – yet, a thread is still referring to it. Again,
additionally delaying the free operation can help minimizing, but is unable to eliminate
this risk.

In a similar manner, dynamically allocated code shared among several or all instrumentation
points is affected by this discussion. For instance, when the instrumentation solution has
been developed as a loadable driver, it may not always be easily possible to determine
whether unloading this driver would be a safe operation. Although any instrumentation may
have long been revoked, some preempted (possibly starved) thread may still be referring to
a routine located within the driver that has been called by instrumentation code.

4.4.7 Disassembly

Certain instrumentation algorithms require partial or even complete disassembly of the
routine to be instrumented. However, the relative complexity of the IA-32 instruction
set, the fact that instructions are of variable length and the problem that code and data
can often not be clearly separated from each other makes decoding IA-32 machine code
nontrivial. Moreover, the existence of indirect jumps can thwart attempts to perform
thorough static analysis on the code.

Faced with certain problematic code and data sequences, both of the two predominant
disassembly algorithms, linear sweep and recursive traversal can run into situations where
they silently begin to produce wrong results. Although the results have been shown to be
improvable by hybrid approaches, the general problem remains in existence [SDA02].

Regarding compiler-generated code, such problematic code sequences rarely occur. Rather,
such code is often a sign of deliberate code obfuscation [Eil05]. Still, in the context of
reengineering-sensitive software, which not only malware but also systems like Digital
Rights Management (DRM) solutions belong to, such code obfuscation is quite popular
and should not be neglected in practice.

The nature of a dynamic tracing solution implies that it must be capable of dealing with
unknown code, i.e. code that has never been instrumented before with the given solution. In
order to properly cope with such code, an instrumentation solution relying on disassembly
and static analysis should therefore put emphasis on the quality of disassembly as it may
directly influence the stability of the system.

4.4.8 Parameter Validation

Although not strictly related to the practice of instrumentation, an important factor of
the safety of instrumentation is proper usage and validation of parameters. Whenever an
instrumentation solution has intercepted a routine call and wishes to access any of the
parameters passed to the routine, it must be capable of dealing with invalid parameters.
The situation where proper parameter validation is especially crucial for system stability is
when any of the parameters contain values specified by a user mode program. As this is the
case for all system service routines, intercepting these routines and using the parameters
passed requires special care. Practices such as using a pointer without proper validation
or dereferencing an object handle without type checking can undermine the security and
stability of the operating system [Joh06].

4.4.9 Other Events

Further events an instrumentation solution may not have control over may influence
proper completion of a runtime code modification. An example of such an event are DMA
operations. A device – without the instrumentation software being aware of – might start a
data transfer affecting the memory location that is currently affected by a code modification.
Due to concurrent accesses, the result of such an operation may thus become undefined.

4.5. Sharing of Resources 31

4.5 Sharing of Resources

The vast majority of tracing solutions can be expected to run parts or even most of their
code in the same virtual address space as the tracee. This holds true for code editing-based
systems but may certainly also apply to other instrumentation solutions which utilize
different tracing techniques.

As such, the tracing code and the traced code share a number of resources, including
memory, registers, condition flags, and handles.

While the tracing code is aware of potential conflicts that may arise from this sharing, the
traced code is not. As such, it is crucial to share these resources in a manner that avoids
conflicts and impacts the traced code to the least amount.

Cmelik [CK94] defines the following four ways to deal with such sharing of resources:

• Partition the resource. Part of the resource belongs to one contender, and part to
another. This, for example, is applicable to heap/pool memory.

• Time multiplex the resource. Part of the time the resource belongs to one contender
and part of the time it belongs to another. Additional processing time and storage are
required for swapping. Use cases for this approach include sharing registers between
the contenders.

• Simulate (virtualize) the resource to the tracee.

• Unprotected sharing – changes made by either effect both. This is generally to be
avoided.

There are ample resources whose sharing between the traced and tracing party may lead to
problems. However, of special interest are those resources that are modified as part of the
instrumentation process. Depending on the tracing technique, this may be code, function
pointers, or other resources. Such modifications are conducted to influence the execution
of the tracee. Yet, running in the same address space, any of such modifications may also
directly or indirectly influence the tracing code, which is generally undesired.

One of the most prominent issue in this regard is reentrance. For example, a routine like
malloc may have been instrumented and is currently traced. Yet, for tracing to work,
a memory allocation may have to be performed on behalf of the tracing code. However,
calling malloc in this situation will invoke the tracing code again, which in turn will lead
to endless recursion.

But even if such recursion is avoided, reentrance may become a problem. The implementa-
tion of malloc in the previous example may not be reentrant or – worse yet – may deadlock
in case of reentrant calls. Again, the situation depicted may well lead to a crash or a hang.

Code modification, even if conducted safely, may lead to undesired, resource sharing-related
effects as well: For example, the instrumentation process may involve injecting int 3
instructions into the the code, with the intent of handling the traps appropriately. However,
if the instrumented program is being debugged, this practice may well interfere with the
debugger’s notion of breakpoints, which may also rely on int 3 instructions being injected.
Clearly, such effects would be a result of the interrupt being shared among both parties
without an ordered sharing strategy.

Properly dealing with shared resources and potential effects such as reentrance is therefore
of utmost importance for the proper working of a tracing solution.

32 4. Challenges Of Runtime Code Modification

4.6 Evaluation of Safety Concerns

Having discussed prevalent challenges of runtime code modification certain conclusions may
be drawn. An important observation is that due to the inherent complexities and challenges
coming along with replacing multiple instructions, an approach that only requires replacing
a single instruction of non-quiescent code is clearly favorable.

Moreover, not all issues are equally critical. Some events such as concurring DMA operations
on memory containing the code to be modified are unlikely and uncommon enough to be
neglected in practice.

Part II

NTrace

35

5 Architectural Overview

Before discussing the approach and implementation of NTrace in detail, the overall archi-
tecture of the system shall be briefly presented. The system has been decomposed into
a number of components in order to allow for the ability to reuse certain components by
other tools. Figure 5.1 shows an architectural overview.

FBT Core Library (FBT)

Kernel FBT Agent Driver (KFAG)

FBT Service DLL (FSV)

Kernel FBT Layer DLL (KFBT) Trace Reader DLL

Trace View GUI

FBT Shell

User Mode

Kernel Mode

Trace

File

Figure 5.1: Buffer Management Dynamics

The actual tracing mechanics have been implemented as a static library, the Function
Boundary Tracing (FBT) Core Library. Both a user mode and a kernel mode version of
this library have been implemented, which share most parts of their code. Moreover, to
account for certain differences in their implementation, two kernel versions of this library
exist – one for the Windows Research Kernel (WRK) [PP06] and one for retail kernels.

The FBT Core Library performs the bulk of instrumentation and tracing, yet it is not
workable on its own – certain aspects, such as event handling, are not handled by this
library itself. The FBT Core Library is embedded into the FBT Agent, which has been
implemented as a device driver. Providing an IOCTL-based interface, this driver wraps
the functionality of the FBT Core Library and implements event handling by maintaining
a trace file events are asynchronously written to. Again, two editions of this driver exist –
one for the WRK and one for retail editions of Windows.

Besides linking against different editions of the FBT Core Library, the WRK version has
additionally been augmented by the capability of working in conjunction with the Windows
Monitoring Kernel (WMK) [SS07]. The WMK is an enhancement of the WRK, specialized
for the purpose of fine-grained monitoring. Besides providing the ability to trace a variety
of events including wait events, system calls and context switches, it provides a dedicated
tracing API. This API can optionally be used by the WRK version of the Kernel Function
Boundary Tracing Agent, provided it is run on a capable kernel.

The FBT Layer DLL is a user mode component that simplifies the usage of the IOCTL-
based interface of the Agent. Moreover, it handles selection, lazy installation and dynamic
loading of the appropriate driver. This library, as well as all kernel mode components, does
not make use of symbols but expects the user to work with raw function virtual addresses
when requesting functions to be instrumented. All symbol handling is performed uniformly
by the Function Boundary Tracing (FBT) Service DLL.

The FBT Service DLL constitutes the top level library. Its main duties include implementing
symbol management and maintaining certain bookkeeping information such as the list of

36 5. Architectural Overview

active instrumentations. As such, this DLL makes extensive use of dbghelp [Cor08a], a
Microsoft provided library for symbol management. On top of this functionality, it also
implements a simple command interpreter.

This command interpreter is utilized by the FBT Shell, a console based application. With
the help of the FBT Service DLL, it provides a user experience similar to the cdb/ntsd
debuggers [Cor08b], although the set of available commands is strictly limited to tracing-
related tasks. Table 5.1 lists a subset of the commands offered.

Table 5.1: A subset of the commands offered by the FBT shell
Command Description
tc Revoke instrumentation on one or more routines
tl List active tracepoints, i.e. traced routines
tp Set one or more tracepoints. Example: tp nt!Ke*
x Search symbol

Finally, a separate Trace Reader library has been implemented for reading the trace file,
which employs a custom binary format. Leveraging memory mapped file techniques, the
aim of this library is to provide efficient access to the trace information and to compensate
for the possibility of lost events. Based on this library, a simple GUI application, Trace
View, allows trace information to be inspected. Utilizing a Tree View control, it also
visualizes the nesting of calls.

Figure 5.2: Screenshot of the Trace View application, showing a trace recorded on Windows
Vista

37

6 Approach

6.1 Context

Based on the classification work discussed in chapter 3, Editing Code has been chosen
as the technique to base NTrace on. The technique promises to be both well-suited for
implementing function boundary tracing as well as allowing tracing to be implemented in a
fashion that delivers sound performance. Yet, a prerequisite for successfully applying this
technique clearly is to properly address the runtime code modification concerns discussed
in chapter 4.

Focusing on the Windows NT platform, an important observation in this regard has been
that to achieve safe runtime code modification, certain aspects of the Microsoft Hotpatching
Infrastructure can be leveraged. To illuminate this synergy, the respective parts of the
Hotpatching Infrastructure shall be briefly discussed.

The aim of the Hotpatching Infrastructure, which has been described and is covered by
a patent held by Microsoft [Gar02] is to provide a means for updating binary modules
during runtime by replacing faulty routines by new, updated routines. In practice, this
replacement is achieved by having old routines redirect execution to the new, updated
routines. To install such redirections, Hotpatching, as its name suggests, employs a certain
amount of runtime code modification.

The key aspect Hotpatching relies on in order to make such redirections safe in terms of
runtime code modification, is the notion of a hotpatchable image. Hotpatchable images,
which have been introduced along with the Hotpatching Infrastructure in Windows Server
2003 SP1, are characterized by being built using dedicated compiler and linker switches,
namely /hotpatch and /functionpadmin respectively:

• The compiler flag /hotpatch effects the first instruction of a routine to be a
mov edi, edi. This instruction is essentially a noop and occupies 2 bytes. These
two properties – that it does not have any influence on the routine’s semantics and
its length are crucial for the further discussion.

For certain routines, especially for routines consisting of few instructions only, however,
the compiler is free to neglect this switch and in fact does not emit said instruction.
Notwithstanding this limitation, experience shows that the fraction of such routines
is reasonably small.

• The linker flag /functionpadmin effects that each routine is preceded by a certain
amount of padding. The size of the padding can be specified as an argument.
Empirical analysis reveals that the linker usually fills this padding area with int 3
(opcode 0xCC) or nop (opcode 0x90) instructions.

Unless stated otherwise, the remaining discussion will imply the padding size to be
five bytes.

While the exact mechanics of how the Hotpatching Infrastructure utilizes these properties
of hotpatchable images are only partly documented, their characteristics will play a
fundamental role in the further discussion of NTrace.

38 6. Approach

6.1.1 Build Environments

With hotpatchable images and the usage of the respective compiler and linker switches
becoming a prerequisite for successful instrumentation, it is worth regarding their support
among current build environments in more detail.

Although both switches have meanwhile been documented and are officially supported,
it turns out that no clear information about the availability among compiler and linker
versions seems to be currently available. A non-authorative list of compiler and linker
versions along with their capabilities with respect to these switches is shown below. The
value (yes) (in parentheses) means that the flags are undocumented, yet workable.

Table 6.1: Support of /hotpatch and /functionpadmin among compiler versions
Product cl version link version Supported?
Visual Studio 2003 SP1 13.10.6030 7.10.6030 (yes)
Visual Studio 2005 14.00.50727.42 8.00.50727.42 yes
Visual Studio 2005 SP1 14.00.50727.762 8.00.50727.762 yes
DDK 3790 13.10.2179 7.10.2179 no
DDK 3790.1830 (SP1) 13.10.4035 7.10.4035 (yes)
WDK 6000 14.00.50727.220 8.00.50727.220 yes

Although their compilers support the respective switches, Visual Studio 2003 and 2005
do not advertise the use of these features, i.e. they are not exposed to the configuration
interface and are not used by default. As a consequence, most modules built with Visual
Studio may be expected to be not hotpatchable.

For kernel mode code, which NTrace clearly focuses on, the situation is different. As of
DDK 3790.1830, the default driver build environment (i.e. makefiles) Microsoft encourages
customers to use employs both switches. Moreover, empirical analysis of the respective
modules reveals that current kernels and drivers provided by Microsoft with Windows
Server 2003 SP1 and newer releases such as afd.sys, ntfs.sys, or tcpip.sys but also user
mode libraries such as kernel32.dll and user32.dll and even applications such as notepad.exe
all have been built using the respective compiler and linker-switches.

6.1.2 Operating System Releases

As indicated, Windows Server 2003 SP1 has been the first release to introduce hotpatchable
images. As a consequence, the further discussion will refer to this and later releases only.

The WRK plays an another important role in the discussion of the proposed dynamic
tracing solution. The WRK comprises the source code of the Microsoft Windows XP
x64/Server 2003 SP1 kernel1 and has been made available for academic purposes. As such,
the WRK not only allows study of the kernel sources, it also allows modifications to be
applied and customized kernel images to be built.

Initially, the applicability of the tracing solution was limited to a customized version of the
WRK that included a small number of code changes. By applying certain modifications,
however, it was possible to port the entire system to the retail versions of Windows Server
2003 SP1/SP2 and Windows Vista. Still, the availability of source code simplified the
development.

Regarding the build settings of the WRK, it is worth pointing out that they do not seem
to fully reflect the build settings used by the retail kernel. Although the /functionpadmin:5

1Certain parts of the source code, most notably, the implementation of hotpatching, have been omitted.
However, as Microsoft provides binary objects for these parts, it is still possible to build the kernel.

6.2. Operation 39

linker switch is used during building, the /hotpatch switch is not. As a consequence, a
WRK kernel built with the default settings will not be hotpatchable. This stands in contrast
to the retail kernel, which seems to have been built with both respective switches used as
it is in fact largely hotpatchable. However, this limitation of the WRK is easily overcome
by adding the /hotpatch switch in the appropriate makefile and rebuilding the kernel.

6.1.3 Symbol Management

Not only targeting the WRK itself but also the retail kernel and drivers has another
implication on symbol management.

An essential requirement for a dynamic tracing solution is to be able to locate routines
within a loaded binary. As the code itself does not provide sufficient information to
accomplish this, additional sources of information have to be used. The two major sources
of such information are map files and debugging symbols, both of which can be generated
during the build of a module. Map files are not well suited for automatic consumption, so
the discussion will focus on debugging symbols, which are specially tailored to this purpose.

The current debugging infrastructure on Windows requires compilers not to embed this
debugging information into the module itself but store it in a separate file, the program
database (PDB). If a PDB contains the entire set of debugging symbols, which is the default,
it is said to provide private symbols. For the binaries of Windows and other applications,
Microsoft does not provide private symbols but rather a stripped-down version of PDB
files only, which are said to provide public symbols. Public symbols lack most of the detail
information provided by private symbols.

With regard to functions, private symbols include very detailed information such as name,
offset, parameter information and calling convention. In contrast, public symbols merely
provide the name and the offset. Moreover, distinguishing between functions and global
variable names is not possible any more.

While a tracing solution targeting the WRK exclusively could in fact rely on private
debugging information, this requirement is prohibitive when targeting retail editions of the
kernel and drivers. Therefore, one requirement for NTrace was to restrict symbol usage to
public symbols.

6.2 Operation

Having discussed the context, the basic operation of the function boundary tracing approach
implemented can now be described. The following sections provide a walk through of how
trace events are captured and consumed. Yet, most implementation details will be ignored
at this stage and will be discussed in chapter 7.

6.2.1 Function Entry Tracing

Function boundary tracing includes both tracing entry and exit of a given function. Yet,
being able to trace function entry is the more basic requirement of the two and shall be
discussed first.

To leverage the properties of hotpatchable images, the basic functionality of function entry
tracing is similar to the idea of hotpatching discussed before. To illustrate this functionality,
Figure 6.1 shows an example of a function Foo that is to be traced:

Execution reaches Foo (1), which has been instrumented before. Part of this instrumentation
is that the first instruction, which has to be a mov edi, edi, has been replaced with a
branch to Foo-5. Following this jump (2), execution reaches the padding area mentioned

40 6. Approach

before which precedes every hotpatchable routine. This area has been initialized with a
trampoline, which basically comprises a single instruction that directs execution (3) to a
special routine (tentatively named CaptureEntryEvent) which traces the call. This routine
is part of the tracing framework. After the tracing information has been obtained, execution
is redirected back (4) to Foo. Yet, to avoid an infinite loop, execution continues at the
second instruction, i.e. the instruction following the mov edi, edi (which has meanwhile
been replaced by the branch instruction). Following on, Foo completes as normal and will
finally return to the caller (5).

Foo‐5:

Foo:

CaptureEntryEvent:

..
.

..
.

(1)

(5)

(2)

(3)

(4)

Figure 6.1: Schematic execution flow for tracing entry events of a function Foo

6.2.2 Function Exit Tracing

As discussed so far, only function entry events can be captured. To trace function exit, the
tracing solution has to regain control before the traced routine will return to the caller.

To implement this regain of control, the function’s return address is modified. This idea
corresponds to what has been described before by Brown [Bro99b] in the discussion of the
COM Universal Delegator.

The return address of the traced function, located on the stack, contains the address within
the calling routine at which execution is to be resumed after return from the function. As
such, it points to the instruction following the call instruction that led to the execution
of the respective function. The layout of a stack frame during the execution of a routine
is illustrated in figure 6.2. In accordance to the IA-32 architecture, the stack is drawn as
growing from top to bottom.

Parameter 2

Parameter 1

…

Return Address

D
ir

e
c
ti

o
n

 o
f

G
ro

w
th

Stack Pointer

Local Variables

…

Figure 6.2: Layout of the stack during execution of a routine.

Clearly, replacing the return address is a way to regain control after the traced function
has returned. However, this technique raises two questions. On the one hand, replacing

6.2. Operation 41

this address is not possible before the call has been initiated and the address has been
pushed onto the stack. However, the function entry tracing technique discussed in the
previous section, already provides a solution to this issue: As this code runs after the call
instruction pointing to the traced routine has been executed, the return address is available
on the stack and can be modified appropriately.

On the other hand, the question of how to preserve the original return address remains
to be solved. Preserving this address for the duration of executing the traced function is
crucial as this address is the only piece of information indicating where execution is to
resume after completion of post-processing activities.

The storage location of the original return address not only has to be thread-local in order
to be able to trace concurrently. It also has to be specific to a stack frame in order to allow
tracing recursive functions or multiple functions that call each other.

The ideal place for storing the original return address would thus be the stack itself – the
stack is thread-local and would also nicely allow storing the return addresses in case of
recursion. Unfortunately however, usage of the stack is not possible: Pushing the address
onto the stack during function entry would shift the location of local variables one machine
word down the stack. While this in itself may be harmless, the offset from the stack
pointer (and base pointer, if used) to the parameters increases by one machine word as well.
This increase, however, will wreak havoc on the proper operation of the routine. As the
assumptions about the relative location of its parameters on the stack will now be wrong,
the outcome of this routine will be undefined.

To overcome this problem, the entire block of parameters could be replicated. That is,
after pushing information such as the original return address onto the stack, all parameters
are pushed again. This additional call frame would then have to be torn down during
function exit processing. However, this approach requires knowledge about the number of
parameters the individual function takes. Yet, with the restriction on public symbols, this
information is not available, which in turn makes this approach infeasible.

The route chosen is thus to provide a separate, thread-local auxiliary stack for the storage
of these return addresses. The implementation of this stack will be discussed in more detail
in section 7.2.

6.2.3 Event Callbacks

Being able to gain control before function entry and after function exit puts the tracing
solution into the situation where it is able to produce and trace appropriate events.

A variety of different approaches for handling such events exist. Yet, in order to keep the
core tracing implementation free of a specific choice in this regard, event handling is left
to other parts of the system. As a consequence, the core implementation restricts itself
to calling an appropriate entry or exit callback routine that has been installed for this
purpose before. This callback routine is provided not only the address of the routine that
is currently being traced but also a snapshot of the general purpose register contents. It is
left to the implementation of this callback how to make use of this information.

6.2.4 Putting the Pieces Together

Having discussed the basic ideas of both function entry and exit tracing, these techniques
can now be combined. Figure 6.3 illustrates the schematic execution flow.

As a result of instrumenting the function Foo, the mov edi, edi instruction, which is
always the very first instruction of a hotpatchable routine, has been replaced with a jump

42 6. Approach

Foo‐5:

Foo:

CallProxy:

..
.

..
.

(1)
(2)

(3)

..
.

EntryThunk:

(4)

(5)

(6)

(7)

Figure 6.3: Schematic execution flow for tracing function Foo

to the padding area preceding the function. This padding area, as mentioned before, is
used as a trampoline.

Using the padding area for storing the trampoline has two benefits. First, no memory has
to be allocated dynamically and the lifecycle issues described in section 4.4.6 are avoided.
Clearly, this benefit is bought in exchange for increased module size.

The main advantage lies in the fact that the distance between trampoline and original
routine is fixed and always 5 bytes in size. This in turn allows a short jump to be used
to redirect execution from the original routine to the trampoline. A short jump occupies
only two bytes and is the smallest jump instruction offered by the IA-32 instruction set.
This also explains the role of the mov edi, edi instruction – also being 2 bytes in size,
the mere role of this instruction is to reserve space for placing said jump. Although this
instruction introduces a certain runtime overhead for each routine, the performance impact
can be expected to be negligible in most cases.

It is worth pointing out that as only the initial mov edi, edi instruction is replaced and
this instruction has been irrelevant to the semantics of the routine, it is, after patching,
still possible to use the routine without being redirected: By skipping the first instruction,
the routine can still be executed and will yield the same results as before the redirection
has been installed.

Setting up the trampoline is not exposed to the issues of runtime code modification as
the code being replaced is essentially dead – assuming proper operation, execution should
never reach the padding area. Therefore, the only critical runtime code modification is the
swapping of the mov edi, edi instruction with the short jump.

Not requiring multiple instructions to be patched, this approach is neither exposed to the
problems of preemption and interruption (section 4.4.3) nor to basic block boundary-related
issues (section 4.4.4).

Moreover, no true disassembly is required by this approach – only the presence of padding
area and the mov edi, edi instruction may need to be verified. Both can be implemented
by a simple memory comparison.

Having entered Foo (1) and taken the short jump, execution reaches the trampoline (2).
Once the trampoline has been reached, two things have to happen. On the one hand,
execution has to be redirected to CallProxy, which will initiate the preprocessing of the call.
Having five bytes (the size of the padding area) at disposition, using a branch instruction
supporting distances large enough to reach this routine directly is feasible.

6.2. Operation 43

While the trampoline is specific to the function Foo, the routines CallProxy and EntryThunk
are not. In order to share code, all routines that are currently in the state of being traced
use these routines. Yet, as call pre- and postprocessing requires knowledge about which
routine call is currently being processed, these functions have to be provided the address of
the traced routine – which, in this case, is Foo.

As an additional complication, it is not clear at this point whether it would be safe to use a
register for passing this information or whether doing so would destroy data. Consequently,
this information has to be passed on the stack.

As it turns out, given these requirements, placing a near call instruction into the trampoline
is a perfect fit. It occupies five bytes, supports a sufficiently large distance and pushes the
address of the subsequent instruction onto the stack. This address, in turn, is exactly the
address of Foo.

Following this call instruction (3), execution reaches CallProxy. As its first action,
CallProxy performs a call to EntryThunk. This additional call will become relevant for
exit tracing. At this point, the stack contains three return addresses – the actual return
address, the address of Foo and the return address of CallProxy. This is illustrated in
figure 6.4.

Parameter 2

Parameter 1

…

Actual Return Address

D
ir

e
ct

io
n

 o
f

G
ro

w
th

Stack Pointer

Address of Foo

Address of CallProxy+5

Figure 6.4: Stack contents at entry of CallProxy

All three return addresses serve a specific role for the preprocessing as performed by
EntryThunk: The actual return address, as noted before, is crucial for being able to return
to the caller after the call with all its pre- and postprocessing has been completed. The
Address of Foo allows EntryThunk to distinguish between multiple concurrently traced
routines. Finally, the return address of EntryThunk itself (CallProxy+5) is required for
post-processing.

Parameter 2

Parameter 1

Saved state

Address of CallProxy+5

D
ir

e
ct

io
n

 o
f

G
ro

w
th

Stack Pointer

Address of Foo

Actual Return Address

...

Figure 6.5: Stack contents during operation of EntryThunk

Based on this setup, EntryThunk now has the following duties:

44 6. Approach

• The entry trace event has to be raised, which manifests itself in a callback having to
be invoked.

• Execution has to be resumed at the called routine, Foo (5). However, doing so would
result in an infinite loop as the first instruction of Foo is the jump into the trampoline.
Therefore, execution has to be resumed at Foo+2, the first instruction following this
jump.

• Before execution can resume at Foo+2, the stack has to be restored – any data that
has been pushed onto the stack in addition to the single first return address has to be
removed to ensure that Foo – in case it makes use of parameters – is able to access
these parameters properly.

• The single return address remaining on the stack must not be the actual return address
but the address of the code performing post-processing, which is CallProxy+5.

The steps taken by EntryThunk are therefore as follows:

• The bottom-most of the three return addresses receives the return address of
EntryThunk itself, which is CallProxy+5. Figure 6.5 illustrates the state of the
stack after this step has been performed.

• A pointer to the auxiliary stack is obtained. Both the address of the traced routine
(Foo) and – most importantly – the actual return address is pushed onto this stack.

• The function entry event is raised by invoking an appropriate callback routine.

• The stack is cleaned up. The two pieces of information that are required for post-
processing – function address and actual return address – have been safely stored on
the auxiliary stack. After trimming the stack, a return to Foo+2 is performed (5),
which results in execution to resume at the traced routine.

Foo will eventually return in one of two ways. Either it returns normally or it is aborted
prematurely by an exception. Exception handling will be discussed in more detail in section
7.6.

In the usual case, Foo will return normally and execution will resume at the return address
(6). As a result of the preprocessing, however, the return address points to CallProxy+5
rather than to the actual calling routine.

Having reached CallProxy+5, postprocessing takes place. Two basic tasks have to be
accomplished:

• The exit trace event has to be raised, which manifests itself in a callback having to
be invoked.

• Execution has to resume at the actual caller.

To perform these tasks, the original return address as well as the address of the traced
routine is required. Moreover, such processing requires a certain amount of stack space.
Neither of these two addresses is reflected by the stack in its current state. Worse yet, as
the calling convention used by Foo is unknown, it is not clear either what information can
still be expected on the stack and which data the stack pointer points to. This is illustrated
by figure 6.6.

Two situations may have occurred:

6.2. Operation 45

...

Parameter 2

Parameter n

Parameter 1

Local Variable m

D
ir

e
ct

io
n

 o
f

G
ro

w
th

Stack Pointer?

Stack Pointer?

Address of CallProxy+5

Figure 6.6: Stack contents after return from Foo

• The stack has not been cleaned yet. The callee (i.e. Foo) may have used the C
Declare (cdecl) calling convention and thus returned without adjusting the stack
pointer to account for the parameters. This situation, for example, occurs when the
function returned by executing a ret.

As a consequence, the stack pointer will now point to the first parameter of Foo,
whose value may or may not still be intact.

• The callee (i.e. Foo) has already cleaned the stack. Calling conventions such as
stdcall require the callee to adjust the stack pointer to account for all parameters.
As an example, this situation occurs when Foo has returned by executing a retn m
instruction with m reflecting the number of bytes occupied by its parameters. In
this case, the stack pointer will now point to the topmost local variable of the actual
callee.

Which of these situations has occurred is not clear. It is, however, possible to deal gracefully
with both situations. In both cases, it is safe to assume that the memory above the stack
pointer (i.e. lower addresses) may be used as scratch space.

Utilizing this scratch space, a pointer to the auxiliary stack can be acquired and the
function address (in this case, the address of Foo) as well as the actual return address can
be obtained.

Having this information at hand, the exit event can be raised by invoking the appropriate
callback routine. After this has been accomplished, the scratch data has to be removed
from the stack and register contents have to be restored so that stack and registers are in
the same state as they were after return from Foo.

Finally, execution has to be transferred to the caller. The crucial point to notice is that
regardless of which of the situations listed above has occurred – CallProxy is not in charge
of cleaning the stack. Therefore, it is safe to push the actual return address and return
from CallProxy with a simple ret instruction. This practice has the additional benefit of
not requiring a register or a memory location as an indirect jump would. After the return,
execution resumes at the caller as normal.

46 7. Implementation

7 Implementation

7.1 Instrumentation

Instrumenting a routine is a multi-step process. Given the name of a single routine or a
pattern matching a set of routines, the first step is to determine the respective virtual
addresses. This translation between symbols, i.e. routine names, and virtual addresses
requires debugging symbols. As such, it is performed entirely in user mode by the FBT
Service DLL, which in turn utilizes dbghelp for symbol handling. To yield valid kernel
mode virtual addresses, this process takes the current load addresses of the affected kernel
modules into account.

7.1.1 Validation

Once the virtual addresses have been obtained, the FBT Agent is sent an IOCTL command
requesting the instrumentation to be performed. It is worthwhile to notice that the content
of such IOCTLs – the virtual addresses of routines to be implemented – is delicate from
a security standpoint. As these addresses will at least be read from, a malicious client
could use such IOCTLs to have the kernel access invalid memory areas, which could in
turn provoke a bugcheck.

However, such situations may even occur without malicious intent and access control
by itself is therefore insufficient to prevent such situations from occurring: A user may,
for instance, accidently request a routine to be instrumented that is part of a driver’s
initialization code. Such routines, however, are commonly marked with the compiler
directive #pragma alloc_text(INIT, RoutineName), which effects that the respective
code is discarded as soon as DriverEntry has returned. Any attempt to access the code of
this routine after driver initialization has completed is likely to provoke a bugcheck.

Thorough validation of instrumentation requests is inevitable to avoid such situations
from occurring. Yet, merely validating all memory locations before performing the actual
patching operation is insufficient to prevent damage. Memory is a shared resource and
other threads may not only modify memory contents concurrently, but also impact the
validity of memory at any time – for instance, by unloading a module. Such checks are
thus exposed to a time of check to time of use (TOCTTOU) [DMS06] issue.

Concurrent unloading of the module to be patched can be assumed to be the most relevant
potential source of problems. In user mode windows, such problems could be mitigated
by incrementing the reference count of the module or pinning the module. Unfortunately,
no similar API is provided in kernel mode Windows – neither the reference count nor an
appropriate lock is accessible through official APIs.

Short of such mechanisms, another approach is used: Some of the checks are delayed until
just before the actual patching operation begins. At this stage, execution of concurrent code
will be prevented and the IRQL will have been raised to DISPATCH_LEVEL. As concurrent
unloads are unable to take place under these circumstances, validation can then be safely
conducted.

The entire validation logic consists of multiple steps. As a first check, the agent verifies
that the addresses received in instrumentation requests indeed fall into memory areas
occupied by modules. This check is still performed at PASSIVE_LEVEL. While this will
detect attempts to access other memory areas such as the pool, it is yet insufficient to
deal with addresses pointing to discarded memory or to parts of the module other than a
routine. Moreover, the respective module could just be about to be unloaded.

7.1. Instrumentation 47

To overcome the limitations of the first step, further validation is performed. However,
this validation is, as indicated before, conducted at DISPATCH_LEVEL while preventing
concurrent execution of other threads. That is, concurrent module unloads as well as pool
allocations are prevented from taking place.

First, the validity of memory has to be verified. In the absence of appropriate APIs for
this purpose, MmIsAddressValid is currently used. Despite its name, this routine checks
whether reading or writing a certain address would result in a page fault. In this context,
an imminent page fault is an indication for the address being invalid. Yet, in the existence
of paged code, a page fault could also be harmless. Short of being able to distinguish
between these situations, any address that reading from would incur a page fault is deemed
invalid and is rejected – false negatives are accepted in trade for improved robustness.

Having verified the validity of memory, the instrumentability of the routines is verified.
That is, the existence of a padding area preceding the function as well as the first instruction
being a mov edi, edi is checked. Not before these checks have all been passed does the
actual patching process begin.

7.1.2 Applying the Patches

Runtime code patching, as discussed in section 4, is exposed to a variety of potential
problems. While some of the issues, such as jump distance-related problems or safety
concerns related to basic block boundaries and disassembly have already been discussed or
even cannot occur with the specific tracing approach chosen, other issues still need to be
addressed.

The first issue to be discussed is memory protection. By default, The NT kernel write-
protects images to prevent them from being modified during runtime. This write protection
could temporarily be revoked by adapting the corresponding page table entries. However,
the NT kernel does not provide a public API for performing such modifications. Although
accessing the page tables directly is possible, such practice would undermine the role of the
PFN Database Lock, which in turn makes this approach risky in practice.

A different approach to attain write access to write-protected memory regions relies on
Memory Descriptor Lists (MDLs). This approach is, as it turns out, also used internally
by the hotpatching infrastructure and has been published in [HB05]. The basic idea of this
approach is to lock the respective memory region to make it resident in physical memory.
Then, an additional virtual address mapping for the physical memory backing the respective
area is created. If this second mapping permits write access, it is possible to circumvent
the protection enforced by the original mapping. Using the second mapping rather than
the original mapping, write access is gained while relying on documented APIs only.

The actual patching operation, i.e. conducting the runtime code modification, depicts cross
modifying code. As such, the potential issues discussed in section 4.4.1 apply and have to
be dealt with.

Using a simple memory move to overwrite this instruction may be considered. Yet, this
approach is not viable as there are no guarantees about the location of the respective
instruction with respect to memory alignment. Moreover, even when bus locking (i.e. usage
of the LOCK prefix) is used to overcome this problem, this practice would not be safe: As
discussed in section 4.4.1, such practice could still lead to undefined processor behavior.

The route chosen by NTrace therefore is to idle all processors but the one performing
the code patch. That is, by the use of KeGenericCallDpc, DPCs are scheduled on all
processors. Using appropriate synchronization, the execution of these DPCs is coordinated
in a way that allows one processor to conduct the runtime code modifications while all other

48 7. Implementation

processors wait for the former to finish. This strategy reflects the idea of the algorithm
defined by Intel for implementing safe cross-modifying code [Int07c].

KeGenericCallDpc is similar to KeInsertQueueDpc, yet it schedules DPCs on all processors
simultaneously and additionally supplies the DPC routine with appropriate synchronization
primitives to synchronize their concurrent execution. KeGenericCallDpc is undocumented,
yet exported by the kernel. As Hoglund and Butler have shown, however, a similar
mechanism can be also implemented based on regular DPCs [HB05].

Once the DPC having been chosen to conduct the runtime code modification begins
executing, the mentioned final step of validation can be performed. As discussed before, it
is crucial for this step to be taken while all other concurrent activity on this system has
been paused.

However, at this point, it should become clear that the validation process is still exposed to
an – albeit less severe – TOCTTOU issue: Locking and mapping the memory using a MDL
has to be performed below DISPATCH_LEVEL to account for the possibility of paged code. It is
therefore not possible to perform the locking from within the DPC. MmProbeAndLockPages,
unfortunately, is unable to cope with all types of invalid addresses. Therefore, the addresses
have to be checked using MmIsAddressValid first. Yet, due to concurrent activity, the
result of the validity check may already be outdated when MmProbeAndLockPages is called.
Given the restrictions of the API, however, this race condition seems hardly avoidable.

Having completed validation, each DPC raises the IRQL above all device IRQLs in order to
protect against interrupts. Performing the actual patch then merely is a matter of copying
memory using memcpy – the fact that memcpy copies non-atomically is not of concern.

When all patches have been applied, the IRQL can be lowered again, all other DPCs can
be unblocked and execution can resume on all processors. Yet, before the DPCs return, a
final step is required in order to comply with the requirements for cross modifying code
[Int07c]: To flush all modifications, a serializing instruction, namely cpuid, is called by
each DPC routine.

To amortize the cost of the entire patching process, multiple routines can be instrumented
at once.

7.2 Auxiliary Stack

A cornerstone of NTrace is the auxiliary stack. Whenever an instrumented routine is
entered, a stack frame will be pushed onto this stack. During postprocessing of the routine,
the frame will be popped and the information contained is used to continue execution.

Two basic pieces of information are stored in a stack frame: The address of the routine being
executed and the original return address. As discussed in section 6.2.2, the stack-located
return address of the traced routine is replaced as part of the call preprocessing. Yet, in
order to properly continue execution after return from the routine, the return address has
to be restored during call postprocessing. For this purpose, the address is preserved as part
of this stack frame.

The rationale of storing the routine address is less obvious. For keeping execution flow
intact, this address is not required. Rather, its sole purpose is to be included in the
event record written during call postprocessing. As will be discussed in more detail in
section 7.7.4, this simplifies the consumption of events and also allows a certain degree of
compensation for lost events.

The auxiliary stack has a fixed size of 256 frames. To avoid overflows from occurring, the
entry thunk, before allocating a stack frame, checks for this condition. In case of stack

7.3. Thread Data 49

depletion, it fails gracefully by falling back to not tracing the call: The return address and
stack modifications are reverted, so that no call postprocessing will have to take place and
thus, no stack frame is required. Execution is then redirected to the actual routine, which
will execute without being traced.

7.3 Thread Data

Containing information specific to a single thread, the auxiliary stack needs to be maintained
on a thread-local basis. However, the auxiliary stack is not the only piece of information
that needs to be kept track off for each thread.

For this reason, all thread-local state is grouped together in a single data structure, the
Thread Data. Each thread on which tracing activity occurs is attached a dedicated instance
of this structure.

7.3.1 ETHREAD Association

User mode Windows allows Thread Local Storage (TLS) to be used for maintaining thread-
local information. However, being a user mode concept, no similar facility exists for kernel
mode Windows.

TLS is maintained as part of the Process Environment Block (PEB) and Thread Environment
Block (TEB). Private to each thread, the TEB contains a plethora of thread-specific
information and reserves space for use by TLS slots, which are defined in the PEB. PEB
and TEB are maintained by the kernel, yet they are mapped into user mode address space
and can thus be accessed from either mode.

Although both PEB and TEB can be managed from kernel mode and utilizing TLS from
kernel mode seems feasible, it is worth pointing why this approach is not viable.

The first obstacle lies in the fact that TLS slots are maintained on a per process basis. Yet,
to allow TLS data to be available in an arbitrary process context, a TLS slot would have to
be allocated for each process. To account for the fact that slot numbers are likely to differ
among processes, a mapping between process and slot would have to be maintained as well.

But even if this problem was solved, the approach would fail to work for system threads.
System threads are used in kernel mode only and therefore lack certain properties a
user mode thread features – which includes the TEB. Having to implement a different
approach for system threads, however, raises the complexity of this approach and renders
it impractical.

Threads are represented by the Windows Kernel as KTHREAD structures. The KTHREAD
structure is embedded into a ETHREAD structure, which adds additional information used
by the kernel subsystems. As such, KTHREAD/ETHREAD structures are not only used
for scheduling but also serve as thread local storage for the kernel and its subsystems.

Drivers, however, are not offered a similar means to maintain thread local state. Not only
does the ETHREAD not reserve space for use by drivers, it is also documented as having
to be considered opaque. That is, its layout must be expected to be subject to change.

7.3.1.1 Windows Research Kernel

On the Windows Research Kernel, this situation is easily dealt with. Having access to the
sources, the definition of ETHREAD has been enhanced by an additional field, PVOID
ReservedForFbt. This field is used to store a pointer to the Thread Data structure.

50 7. Implementation

7.3.1.2 Retail Kernel

Short of being able to modify the ETHREAD structure, a different strategy has to be
found for the retail edition of the Windows kernel.

Initially, a hashtable had been chosen for implementing a mapping between ETHREADs and
Thread Data structures. Although workable, this approach had a number of disadvantages:
As lookups can be expected to be performed at a very high frequency – at least once per
entry or exit of a traced function – the nature of a hashtable of offering non-constant lookup
time is unfortunate. Moreover, access to the hashtable has to be interlocked properly. Not
only must this locking be workable at any IRQL, which rules out all dispatcher-based locks,
it also has to properly guard against concurrent access by interrupts. As a consequence,
regardless of the exact locking scheme used, accessing the table has to involve raising
the IRQL. Yet, as adjusting the IRQL is a non-trivial operation, the frequent calling of
KfRaiseIrql and KfLowerIrql must be expected to have a negative performance impact.

Another non-obvious drawback of the callout to KfRaiseIrql and KfLowerIrql is poten-
tial interference with Driver Verifier. If Driver Verifier has been enabled for the agent
driver, KfRaiseIrql is among the routines hooked. Unfortunately, the surrogate im-
plementation, VerifierKfRaiseIrql, itself calls a number of memory-related routines,
MiTrimAllSystemPagableMemory being one of them. If one of these routines has previously
been instrumented for tracing, this leads to endless recursion. This situation is illustrated
by the stack trace in figure 7.1, which was taken shortly before a stack overflow occurred.

1 [...]

2 nt!ViTrimAllSystemPagableMemory +0x53

3 nt!VerifierKfRaiseIrql +0x39

4 jpkfar32!JpfbtsAcquireTlsLock +0xd

5 jpkfar32!JpfbtGetFbtDataThread +0x11

6 jpkfar32!JpfbtpGetCurrentThreadDataIfAvailable +0x11

7 jpkfar32!JpfbtpGetCurrentThreadData +0x11

8 jpkfar32!JpfbtpGetCurrentThunkStack +0xb

9 jpkfar32!JpfbtpFunctionEntryThunk +0x17

10 (instrumented nt!MiTrimAllSystemPagableMemory)

11 nt!ViTrimAllSystemPagableMemory +0x53

12 nt!VerifierKfRaiseIrql +0x39

13 jpkfar32!JpfbtsAcquireTlsLock +0xd

14 jpkfar32!JpfbtGetFbtDataThread +0x11

15 jpkfar32!JpfbtpGetCurrentThreadDataIfAvailable +0x11

16 jpkfar32!JpfbtpGetCurrentThreadData +0x11

17 jpkfar32!JpfbtpGetCurrentThunkStack +0xb

18 jpkfar32!JpfbtpFunctionEntryThunk +0x17

19 (instrumented nt!MiTrimAllSystemPagableMemory)

20 nt!ViTrimAllSystemPagableMemory +0x53

21 nt!VerifierKfRaiseIrql +0x39

22 jpkfar32!JpfbtsAcquireTlsLock +0xd

23 [...]

Listing 7.1: Stack trace illustrating recursion caused by interference of Driver Verifier with
a hashtable based approach

In favor of a more lightweight solution that is also less prone to reentrance, a different
approach had to be taken. Ideally, the pointer to the Thread Data structure could be
stored in the ETHREAD, as in the case of the WRK. Yet, ETHREAD does not reserve
space for this and is also a rather dense-packed structure, i.e. no spare space for storing a
full pointer-sized value could be located.

At least two fields of the ETHREAD, SameThreadPassiveFlags and SameThreadApcFlags,
however, are wider than necessary. Both fields are defined as ULONG, yet less than 16 bits

7.3. Thread Data 51

are actually used. The pointer to the Thread Data structure is thus split into two 16 bit
words and each word is stored in the upper word of the two respective fields. The contents
of the lower words are preserved.

Both fields are explicitly documented in the WRK sources as being accessed from the
same thread only. That is, modifying the contents of these fields can be expected to be
safe without having to guard against concurrent access. To protected against reentrance,
however, it is still crucial to perform each of the two stores in an interlocked fashion.

To account for the fact that the layout of ETHREAD evolves over operating releases, the
offsets to the fields are chosen based on the individual build of the kernel.

Using spare bits in the ETHREAD structure has proven to be a workable and robust
approach, yet it clearly does not quite follow good practice. However, as has been demon-
strated in case of the WRK, a similar, yet cleaner approach exists. Therefore, having
to revert to using spare bits does not denote an inherent limitation of the entire tracing
approach but is rather an artifact of the inability to augment the source code of the retail
kernel.

7.3.2 Allocation

Being able to dynamically load and initialize the tracing system on a running system
was among the aims of the implementation. When the agent driver is first loaded, all
threads can be expected to not have a Thread Data structure attached. Yet, before the
first procedure entry event can be captured, the respective thread must have been attached
such a structure.

One option to implement timely allocation and association of Thread Data structures would
be to eagerly attach each existing thread on the system such a structure during initialization
of the driver. Each thread being spawned after the driver has been loaded would also have
to be attached a Thread Data structure. Despite the various race conditions this approach
would have to cope with, it also is inefficient: If only a few threads are affected by the
instrumentation, most of the allocated structures will not be used.

Lazy allocation of Thread Data does not suffer from these problems and has thus been
favored. Not before the first procedure entry has been intercepted, is the structure allocated
for the current thread.

However, lazy allocation introduces a different set of problems. For one, the Thread Data
has to be allocated from the non paged pool. ExAllocatePoolWithTag, the routine to
allocate such memory, allows allocations to be made at IRQL DISPATCH_LEVEL and below.
It is, however, well possible that the first routine to be traced on a thread runs at a higher
IRQL – which, for instance, is the case for an interrupt service routine. As this is a rather
common scenario, failing the allocation under such circumstances is undesirable. To remedy
this problem, a pool of preallocated structures is created during driver initialization, which
is used to satisfy allocation requests at elevated IRQL.

While this approach works decently when only drivers are instrumented and traced, it
becomes risky as soon as routines of the kernel image are instrumented.

ExAllocatePoolWithTag is a non-trivial operation and utilizes a number of other routines.
If ExAllocatePoolWithTag itself or any of these routines is instrumented, happens to be the
first instrumented routine hit by a specific thread, and the IRQL is below DISPATCH_LEVEL,
it will cause an allocation to be made. Yet, calling ExAllocatePoolWithTag to perform
this allocation will cause the same procedure to be traced again. As there is still no Thread
Data available, an allocation will be triggered. At this stage, a point of endless recursion
has been reached, which will finally lead to a stack overflow and a bugcheck.

52 7. Implementation

The initial approach to avoid allocation-related issues was to protect against reentrant
Thread Data allocations. Before ExAllocatePoolWithTag is called, the current thread is
flagged as being in the state of allocating a Thread Data structure. Whenever such an
allocation is attempted, this flag is checked. In case it is set, reentrance must have occurred
and the allocation request is failed before any harm can be done. Although some events
will be lost, the danger of endless recursion is mitigated. After a Thread Data allocation
has been completed, the flag is cleared.

It is, however, worth pointing out that although being an effective countermeasure to
reentrance, calling ExAllocatePoolWithTag in presence of instrumented kernel routines
may still endanger system stability: A situation that has been encountered in practice
was that one of the routines indirectly used by the background threads of the memory
manager was instrumented and happened to be the first instrumented routine to be hit
on this specific thread. To allocate a Thread Data structure, ExAllocatePoolWithTag
was called. However, the special circumstances of this call being made from one of the
memory manager background threads in the midst of their operation led to a situation
where ExAllocatePoolWithTag was confronted with an invalid state, which manifested
itself in a IRQL_NOT_LESS_OR_EQUAL bugcheck.

Taking consequences of this failure, performing lazy allocations using
ExAllocatePoolWithTag must be expected to be too risky in this context: While
the approach can still be used in case only drivers are traced, it should be avoided as soon
as kernel routines are instrumented. Hence, the FBT core library allows a flag to be set
that causes all allocations, regardless of the IRQL, to be satisfied using the preallocation
pool.

7.3.3 Deallocation

Once the agent driver is requested to unload, one of its duties is to clean up all resources
previously allocated. Keeping track of all Thread Data structures that have been lazily
allocated before is thus crucial in order to allow an orderly cleanup.

Before a Thread Data structure is attached to a thread, it is put onto a list: This list,
rooted in the global structure where the agent maintains its state, contains all allocated
Thread Data structures currently in use.

When the driver is unloading and it has been verified that deallocating the structures
is indeed safe, this list of Thread Data structures is traversed. First, each structure is
disassociated from the corresponding thread – this is crucial to avoid leaving a stray pointer
in the thread’s ETHREAD, which would lead to problems when the agent is loaded again at
a later point in time. Depending on the pool from which it has been allocated (preallocation
pool or normal pool allocation), the structure is then freed.

Another aspect of deallocation is dealing with threads terminating before the driver is
unloaded. If such occurrences were ignored, the deallocation logic depicted above could
touch freed memory – memory that has previously been occupied by an ETHREAD but
has meanwhile been freed.

For this reason, the agent additionally registers for notification about terminating threads
by using PsSetCreateThreadNotifyRoutine. Once notified, the agent will cleanup and
unregister the Thread Data structure of the respective thread.

7.4 Unloading

Before the Function Boundary Tracing Agent Driver can be unloaded, all outstanding
instrumentation has to be revoked. For this to work, the FBT core library maintains a list

7.4. Unloading 53

of all active code patches, the patch database. Before unloading, all of these patches are
revoked by swapping the old code, which is also preserved as part of this database, back in.
The actual code modification in conduced in the same manner as has been discussed in the
context of instrumentation.

Yet, such operation could be risky in case the affected routine is part of a driver rather
than part of the kernel itself. In this case, it is possible that the driver has meanwhile been
unloaded, which means that the affected memory is not valid any more. To avoid invalid
memory accesses, the validity of memory is checked once again before the code replacement
is conducted.

A related, yet less common situation is where the driver has been unloaded, but the affected
memory region has meanwhile been reused for different purposes. To detect this situation,
the memory is additionally checked for containing the characteristic jump-to-trampoline
instruction.

However, merely reverting all routines to their original state is insufficient to ensure that
unloading the driver is safe. The following example illustrates this problem:

• Thread 1 is currently executing Routine Foo, which has been instrumented for tracing.

• Thread 2 revokes instrumentation on Foo and unloads the driver.

• Thread 1 reaches the end of Foo and will return into the CallProxy. As CallProxy
is part of the driver, which has meanwhile been unloaded, this will result in an access
violation or arbitrary memory contents to be executed.

The driver, being dynamically loadable and unloadable, can be considered dynamically
allocated code. The driver code being executed as part of pre- and postprocessing of every
traced routine is thus fully exposed to the issues of lifecycle management discussed in
section 4.4.6. As such, the situation illustrated merely reflects the inherent race condition
already described.

As indicated by section 4.4.6, the best the driver can do in such situations is to try to
minimize the risk by tracking usage of the dynamically allocated code. Although such
practice cannot remedy the problem in its entirety, delaying the unload until the usage
count has dropped to zero decreases the likelihood of such problems significantly.

As a fortunate side effect of the tracing mechanism implemented and discussed so far,
introducing additional reference counting to implement such usage tracking is not necessary.
Rather, the auxiliary stacks of all threads can be checked for being empty. If any of the
stacks is non-empty, execution is delayed by one second and the check is retried.

Like reference counting, this mechanism is effective, yet still exposed to race conditions. On
the one hand, the implicit assumption of that the auxiliary stacks cease to grow as soon as
all routines have been uninstrumented is flawed: It is possible that when uninstrumentation
occurs, some thread may already have entered the EntryThunk, but is preempted before
being able to allocate a frame on the auxiliary stack. Resuming execution at a later point in
time, a stack frame allocation will be conducted although all instrumentation has meanwhile
been revoked.

On the other hand, it is possible that the last frame on the auxiliary stack has been removed,
yet execution has not yet left the CallProxy. Again, the driver code is still in use although
all auxiliary stacks may already be empty.

54 7. Implementation

Unable to avoid these race conditions, the driver follows the approach as taken by KernInst
[TM99, Tam01] and introduces a further three-second delay. During these three seconds,
all threads are given the chance to leave the critical code sections.

Although still not entirely safe, this unloading strategy has worked well in practice. However,
especially when instrumenting large amounts of routines, it turns out that it may in fact
take a significant amount of time before all traced routines have completed. It is thus not
unusual for the driver unload to take several seconds or minutes.

When instrumenting the kernel itself, this becomes even more noticeable, as the kernel
contains a number of routines that may block for significant amounts of time. One such
routine is KeWaitForSingleObject. When used for a wait that takes an hour to be
satisfied – possibly on behalf of a user mode application – it will not return before this hour
has elapsed. If KeWaitForSingleObject has been instrumented and the driver is later
requested to be unloaded, unloading will also be delayed until this wait has been satisfied.

Not before these safety checks have been passed, the driver begins to tear down. This
includes disassociating ThreadData structures from their threads and freeing the respective
allocations, as well as flushing buffers.

7.5 CallProxy and CallThunk

The general working of the CallProxy and CallThunk routines and the way they are used
to intercept function invocation has been discussed before in section 6.2.

However, a number of details about the implementation of these routines have not been
discussed so far.

7.5.1 State Preservation

The aim of the CallProxy and the EntryThunk is to interpose the call to a routine. Yet,
in order not to change the outcome of the call, it is crucial that the contract between the
calling and the called function remains intact.

In this regard, the contract between the two function is defined by the calling convention.
The calling convention defines in which memory locations and in which order parameters
have to be passed, where the return value of the function is to be stored and whose duty it
is to clean up stack space that might have been occupied by parameters.

Regarding the WRK sources and the header files of the WDK, the most prominent calling
convention encountered in the kernel is stdcall, followed by fastcall, which is used rather
infrequently.

One approach to ensure that the contract between two functions remains intact could be to
rely on the call adhering to a certain calling convention. Having access to public symbols
only, it is not clear which calling convention is used. Yet, it is reasonable to assume that it
is either stdcall, fastcall, cdecl or thiscall. Based on this assumption, it would, for instance,
be safe to not preserve the contents of the eax register during call preprocessing. eax is
volatile and none of the mentioned conventions use it to pass parameters. In the same
manner, ecx would not need to be preserved during postprocessing. Again, ecx is volatile
and is not used to store the return value by any of these calling conventions.

Although appealing, this approach is not feasible in practice. For exported routines, i.e.
routines made available for use by a different module, the compiler indeed makes sure that
the calling convention is adhered to. For routines used internally, however, the compiler is
free to ignore the specification of a calling convention: Rather than passing all parameters

7.5. CallProxy and CallThunk 55

on the stack as the respective calling convention may specify, the compiler may, for instance,
decide to pass one or more parameters in registers.

It is worth pointing out that not only static routines, i.e. routines used within a
single object file only are subject to such optimization. With the advent of link time
code generation, the Microsoft compilers are capable of performing such interprocedural
optimization on the entire image, rather than on individual objects only. As a consequence,
any routine not exported by the respective module must be assumed to potentially not
adhere to any of the default calling conventions.

Aiming at being able to trace internal routines as well as exported routines, this approach
has thus been dismissed. Yet, for a solution that restricts itself to intercepting exported
routines such as IAT hooking, this approach may in fact be viable.

Short of any guarantees by the compiler, a rather pessimistic approach had to be taken:

• Not knowing which registers are used to pass parameters, which registers are non-
volatile and which registers are free, the assumption is that all registers contents have
to be preserved – both during call pre- and postprocessing.

• It is assumed that an arbitrary amount of stack space is used for passing parameters.
Whether the caller or the callee is in charge of cleaning the stack is unknown.

• All memory beyond the current stack pointer (i.e. higher addresses) is assumed to be
unused.

The last item requires further discussion. The stack pointer points to the topmost item on
the stack. Convention dictates that stack memory beyond the location pointed to by the
stack pointer, should not be accessed. Still, such memory locations can be easily addressed
and the compiler could generate code that does so.

There is, however, a simple reason why it is safe to assume that kernel mode code does not
defy this convention: Interrupt processing.

If an interrupt occurs and no privilege-level change has to be performed, the CPU will push
the EFLAGS, CS and EIP registers on the stack [Int07a]. That is, the stack of whatever
kernel thread happens to be currently running on this CPU is reused and the memory
locations beyond the stack pointer will be overwritten by these three values. Handling the
interrupt, which involves running the interrupt service routine (ISR) occurs on the same
stack as well.

As a consequence, code accessing memory locations beyond the current stack pointer would
have such memory locations be overwritten in case of interruption. As the compiler can be
assumed to be unaware of which code sequences are subject to interruption and which code
sequences are not, it is safe to assume that the compiler will always emit code that adheres
to this convention. The same holds for hand-written assembly code sequences, although
these routines tend to be not hotpatchable anyway.

The consequence of this observation is that the CallProxy and EntryThunk can safely use
the stack as scratch space as long as they adjust ESP accordingly. Due to the restriction of
having to preserve all register contents, this ability to use the stack is essential. It allows
both the CallProxy and EntryThunk to establish a stack frame and to free a certain amount
of registers by pushing their contents onto the stack and restoring them later.

56 7. Implementation

7.5.2 Reentrance

During call pre- and postprocessing, the state of the thread-local ThreadData structure is
modified. This modification, which includes, but is not limited to setting up a frame in the
auxiliary stack, is a multi-step process. Although being consistent at the beginning and at
the end of this process, the ThreadData structure will temporarily be inconsistent during
this modification process.

This temporary inconsistence will become an issue as soon as the thread is interrupted
while being in the midst of a ThreadData modification process. If any routine that is being
executed as part of the interrupt processing has been instrumented for tracing, reentrance
will occur. That is, the preprocessing of the call to such a routine will operate on an
inconsistent ThreadData structure, which leads to arbitrary behavior.

However, not only the modifications to the ThreadData structure themselves are sensitive
to reentrance. Lazy allocation of these structures is equally affected. Even when the
allocation code is fully reentrant, situations can occur where two structures are allocated
for the same thread. Management of buffers, a topic discussed in section 7.7 is affected in
a similar manner.

Properly handling reentrance is thus crucial. The two options are thus to either make all
affected code fully reentrant or to properly guard against reentrance. While the first option
may in fact be feasible, the affected routines of the current implementation only partially
achieve this aim. That is, both the CallProxy and the EntryThunk contain a window of
instructions that must be protected from reentrance.

To attain this protection, a simple scheme has been implemented. Leveraging one of the
bits borrowed from the ETHREAD, a flag has been introduced. Before entering the critical
window, the flag is attempted to be set; it is cleared as soon as the window is left. If the
flag turns out to be already set when entering the window, reentrance must have occurred.
Similar to what occurs on auxiliary stack overflow, any modifications are reverted and the
respective routine is executed without being traced.

It is worth pointing out that the situations depicted above do in fact occur on a regular
basis. In practice, before appropriate countermeasures had been put in place, and all
kernel routines (i.e. nt!*) were instrumented, it was only a matter of seconds before these
problems led to a triple fault.

7.6 Exception Handling

Windows NT features a builtin exception handling infrastructure, Structured Exception
Handling (SEH). SEH exceptions are not only used for handling software exceptions, i.e.
exception explicitly raised via RtlRaiseException. It is also used for handling hardware-
defined faults or traps such as Integer divide by zero conditions.

So far, the existence of exceptions has largely been ignored in the discussion of function
entry and exit tracing. Rather, the implicit assumption has been that for each function entry
successfully intercepted, there will be an intercepted function exit. During preprocessing, a
frame is pushed onto the auxiliary stack, during postprocessing, a frame is popped. As
entry and exit interceptions cleanly nest, it is assured that the popped frame is in fact the
right one, i.e. the frame corresponding to the specific call frame.

Exceptions, however, thwart this assumption. When a routine raises an exception, the
exception can cause the routine to not run to completion but to be left prematurely. The
same holds for all routines corresponding to the call frames between the call frame handling
the exception and the call frame raising the exception. All these routines will be left

7.6. Exception Handling 57

prematurely as well. Prematurely leaving a routine means that it does not return to
the caller as normal. This, in turn, becomes a problem if one of the routine has been
instrumented for tracing: a skipped return implies that postprocessing will not be able to
take place and thus, that the corresponding frame will not be popped from the auxiliary
stack.

An unbalanced auxiliary stack entails three basic issues. The least of which is a resource
leak: The un-popped frames will remain on the stack and new frames will be pushed atop
of these frames. Preventing the auxiliary stack from ever becoming empty again, these
frames effectively denote a resource leak. Diminishing the effective size of the stack, they
also raise the probability of stack depletion. As discussed in section 7.2, such auxiliary
stack depletions can be properly dealt with. However, they will still lead to more events
being missed.

The second issue is an implication of the frames being leaked. As the auxiliary stack will
never empty again, the unloading logic discussed in section 7.4 will keep identifying an
affected thread as still being active: Short of being able to distinguish leaked frames from
non-leaked frames, it will assume that the thread is still running traced routines. Waiting
for these routines to complete, however, will be unfruitful – the unload will take forever.

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

handled by

Figure 7.1: An example callstack when an exception is raised. Gray boxes denote stack
frames of traced routines.

The most critical issue, however, is what occurs in situations where there are stack frames
of traced routines on the callstack both, between the stack frame of routine raising and the
stack frame of routine handling the exception, as well as underneath the stack frame of the
routine handling the exception. An example for such a situation is illustrated by figure 7.1:
Depicting a callstack, the stack is drawn growing bottom-up. Each box denotes a call frame,
gray boxes denote call frames of traced routines. Routine5 raises an exception, which is
handled by Routine3. As discussed before, one frame will now be leaked on the auxiliary
stack. If Routine3 and Routine2 later return, postprocessing for the latter routine has to
take place. That is, the topmost frame is popped from the auxiliary stack and is used to
obtain and reconstruct the original return address. However, as the top frame denotes the
leaked frame and is thus not the frame corresponding to the call frame of Routine2, this
address will be wrong – rather than pointing into Routine1, it will point into Routine3.
Needless to say, continuing execution at the wrong return address will lead to behavior
that may be considered arbitrary.

Properly dealing with exceptions to avoid such interferences is thus of utmost importance.
The implementation has to ensure that the auxiliary stack is always kept in balance and in
sync with the actual call stack.

7.6.1 Structured Exception Handling

SEH is available both in kernel and user mode. While user mode SEH is not within the
scope of this discussion, two things are worth pointing out: First, handling user mode

58 7. Implementation

exceptions requires the help of the kernel. That is, user mode exception handling is not a
pure user mode concept. Second, both, user and kernel mode exception dispatching, are
sufficiently similar to be discussed jointly.

The workings of user mode SEH have been discussed in detail by [Pie97]. Given their
similarity, this discussion largely holds for kernel mode SEH as well.

To allow a more detailed discussion of SEH and how it is relevant to function boundary
tracing, the following section provides a brief overview of the inner workings of SEH. It is,
however, crucial to notice that the implementation of SEH on IA-32 differs fundamentally
from the implementation on AMD64. The remaining discussion is therefore largely IA-32-
specific.

SEH is synchronous in that throwing and handling an exception only affects a single thread.
It is also built upon the notion of frame based exception handlers. That is, exceptions are
not handled globally – rather, each routine may associate an individual exception handler
with its call frame.

Short of hardware support on IA-32, SEH uses a programmatic approach to maintain
exception handlers and their association to call frames. Each routine wishing to install an
exception handler – either to actually handle an exception or at least to be notified about
an exception, does so by creating an EXCEPTION_REGISTRATION_RECORD. This structure
holds a function pointer to the exception handler routine that is to be called during
exception dispatching. To become effective, the structure is registered by placing it in
thread-locally maintained linked list of registration records. These steps are usually done
at the very beginning of a routine. Accordingly, before the routine is left, the record must
be unregistered by removing it from the linked list. The structure itself must be allocated
on the stack.

The root of the list, i.e. the pointer to the topmost registration record is located at the
very beginning of the Thread Information Block (TIB). In user mode, the TIB is part of
the TEB, in kernel mode, it is part of the Processor Control Region (PCR)1. In both cases,
it is always accessible at offset 0 in the FS segment. Being part of the PCR rather than
the KTHREAD, the dispatcher ensures that the pointer is updated whenever a different
thread becomes subject to execution.

7.6.2 Exception Dispatching Process

When an exception is raised, the system walks the list of registration records, calling
each handler routine until it finds a handler agreeing to handle the exception. This
is implemented in RtlDispatchException. Focusing the discussion on the usual cases
only, a handler routine will return either ExceptionContinueSearch, indicating that
the search for a handler shall continue, or ExceptionContinueExecution, indicating
that the handler has handled the exception. Certainly, before a handler can return
ExceptionContinueExecution, a number of steps must have taken place.

There are basically two ways how an exception handler can deal with an exception. First,
the handler can fix the reason for the fault and can request the faulting instruction to be
retried by retaining the instruction pointer and returning ExceptionContinueExecution.
Regarding traced routines, this situation can be deemed harmless.

The second, more common case is that execution is to be resumed elsewhere – such as in some
exception compensation code located in the routine having installed the respective handler.
However, continuing execution at a different address not only requires the instruction

1The PCR maintains processor-specific state. The kernel maintains one instance of this structure per
processor.

7.6. Exception Handling 59

pointer to be updated and returning ExceptionContinueExecution, it also implies that
the routines corresponding to any outstanding call frames are about to be left prematurely.
This is the situation where frames on the auxiliary stack are in risk of being leaked.

NT provides a dedicated routine for this purpose, RtlUnwind. Before internally calling
ZwContinue to perform the continuation, RtlUnwind performs a second phase of exception
dispatching, unwinding. During unwinding, each routine about to be prematurely left is
given the option to perform cleanup work. That is, the list of exception registration records
corresponding to the call frames in question is walked once more, and each handler is called
again with a flag indicating that unwinding is taking place. Not before this phase has been
completed is execution resumed at the new location.

Based on this brief summary of the exception dispatching process, it becomes clear that
whenever unwinding occurs, the auxiliary stack has to be unwound as well.

7.6.3 Auxiliary Stack Unwinding

Adapting RtlUnwind in the WRK to additionally trigger unwinding of the auxiliary stack
seems possible, yet would have thwarted the intent of implementing the entire solution as a
device driver and making it compatible with the retail kernel. This approach has hence
been dismissed.

To be notified about a call frame corresponding to a traced routine being unwound, the
natural approach is to leverage the SEH unwinding infrastructure itself. The basic idea is
thus as follows: During preprocessing of a traced routine, an additional exception handler
is registered. Following general SEH practice, the handler will be unregistered during
postprocessing.

While this handler will merely return ExceptionContinueSearch for all exceptions being
dispatched, it will take additional action in case of an unwind: To keep the auxiliary stack
up to date, all it has to do is to pop its topmost frame.

Unfortunately, this approach is not viable in practice. Registering an additional exception
handler requires a EXCEPTION_REGISTRATION_RECORD structure to be set up. As noted
before, SEH requires this structure to be allocated on the stack and be accessible during
the duration of the entire call. Yet, although the structure occupies only 8 bytes, such
stack allocation, as has been discussed in section 6.2, is infeasible to be made.

Any attempts to store the registration record elsewhere, such as as part of the current
frame in the auxiliary stack, are thwarted by the thorough validation logic implemented
both in RtlDispatchException and RtlUnwind.

Although the original idea kernel has been retained, the implementation therefore had to be
adapted in order to account for these special circumstances. Short of being able to allocate
a dedicated registration record, the next underlying registration record is hijacked : The
existing pointer to the exception handler is exchanged against a pointer to the auxiliary
stack unwinding exception handler. This exchange is conducted during preprocessing of the
traced routine. Accordingly, the modification is reverted during postprocessing.

The handler itself, after completing its own work, will delegate the call to the original handler
having been replaced. That way, both handlers effectively share the same registration
record.

Certainly, this scheme requires the pointer to the original exception handler to be retained.
Yet, the actual registration record does not offer space for storing an additional pointer, so it
has to be stored separately. Conceptually, the right kind of storage would be a thread-local
map between pointers to registration records and pointers to the corresponding original
handler routines.

60 7. Implementation

In practice, however, a full-fledged map can be assumed to be not necessary. The routine
being looked up most frequently will always be the routine corresponding to the topmost
stack frame, followed by the routine of the second most recently pushed stack frame, and
so on. As a consequence, the implementation does not use a separate map, but rather
stores this information as part of the current stack frame of the auxiliary stack.

To account for cases where the topmost frame does not contain the pointer being looked
for, the stack frame has been augmented by a pointer to the corresponding exception
registration record. That way, looking up the correct handler is a matter of scanning the
stack top-down, checking each pointer to the registration record, and finally obtaining
the corresponding pointer to the handler routine. As indicated before, this scan can be
expected to span few frames only, in most cases only the topmost frame.

Listing 7.2 shows the abbreviated structure defining an auxiliary stack frame.

1 typedef struct _JPFBT_THUNK_STACK_FRAME

2 {

3 //

4 // Hooked procedure.

5 //

6 ULONG_PTR Procedure;

8 //

9 // Caller continuation address.

10 //

11 ULONG_PTR ReturnAddress;

13 struct

14 {

15 //

16 // Pointer to the (stack -located) registration record

17 // corresponding to this stack frame.

18 //

19 PEXCEPTION_REGISTRATION_RECORD RegistrationRecord;

21 //

22 // Pointer to original handler that has been replaced.

23 //

24 PEXCEPTION_ROUTINE OriginalHandler;

25 } Seh;

26 } JPFBT_THUNK_STACK_FRAME , *PJPFBT_THUNK_STACK_FRAME;

Listing 7.2: Definition of an auxiliary stack frame

So far, we have implied that using a single exception registration record for both the original
and the auxiliary stack unwinding exception handler, and performing proper call delegation
yields the same functionality as using two separate registration records. However, this is
not the case – in fact, there is a slight semantic difference that requires the scheme to be
revised.

7.6.3.1 Topmost Exception Handler Initiating an Unwind

Figure 7.2 illustrates a situation in case no tracing is used. One of the call frames (Routine3)
has set up a SEH record. For the sake of simplicity, this is the only record on the list of
exception registration records pointed to by the processor’s PCR.

The same situation shall now be considered under the assumption that Routine4 has been
instrumented for tracing. Following the technique discussed before, the SEH record of
Routine3 has been updated to point to the auxiliary stack unwinding exception handler.

7.6. Exception Handling 61

Handler1

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

ERR

PCR

Figure 7.2: An example callstack. ERR: Exception Registration Record.

Aux. Frame 1 Handler1

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

handled by

ERR

PCR

Aux. Stack

Unwinding Handler

Figure 7.3: An example callstack containing a call frame of an instrumented Routine,
Routine4.

The pointer to the original exception handler has been stored in the auxiliary stack frame
corresponding to Routine4. The resulting setup is illustrated in figure 7.3.

If Routine5 now raises its exception, RtlDispatchException will first inspect the SEH
Record of Routine3 and invoke its handler, which is the auxiliary stack unwinding exception
handler. Not yet knowing whether the exception will trigger an unwind or not, this routine
will merely delegate the call to the original handler, Handler1, in order to let it make a
decision.

We now assume that the original handler decides to handle the exception by continuing
execution in Routine3 and calls RtlUnwind accordingly. However, RtlUnwind, noticing that
it has been the handler of the topmost registration record that has handled the exception,
realizes that no unwinding has to take place and will initiate the continuation. While this
behavior is clearly correct, the net result is that the unwinding logic of the auxiliary stack
unwinding exception handler has not been invoked.

The underlying problem is that for the scheme to work, RtlUnwind would have to perform
unwinding for all registrations down to and including the registration whose handler has
handled the exception. Only in this case would it invoke the unwinding logic of the auxiliary
stack unwinding exception handler. However, as said, RtlUnwind rightfully excludes the
latter from unwinding.

Unaware of the fact that the registration record in question is actually shared by two
handlers, this leads to the situation where the auxiliary stack unwind fails to take place.

As such, the mechanism as discussed so far is not complete. There is, however, a way to
mitigate this problem and cause RtlUnwind to always properly call the auxiliary stack
unwinding exception handler. The idea is as follows: The auxiliary stack unwinding handler

62 7. Implementation

is split into two routines: The proxy exception handler and the unwind handler, both valid
exception handler routines.

The unwind handler merely contains the auxiliary stack unwinding logic. That is, when
called, the routine unconditionally pops the topmost frame. Moreover, an appropriate
event callback routine is invoked.

The proxy exception handler, as its name suggests, delegates to the original exception
handler. When called in the non-unwinding case, however, before the call is delegated to
the original routine, an additional, full-fledged SEH frame is set up, specifying the unwind
handler as exception handler.

Aux. Frame 1 Handler1

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

handled by

ERR

PCR

CallOriginalHandler

...

ERR Unwind Handler

Handler1

Proxy Exception

Handler

Figure 7.4: State during execution of the original exception handler

Figure 7.4 illustrates the state at the point where the proxy exception handler has delegated
the call to the original handler: The SEH chain now temporarily contains an additional
registration record, illustrated with dashed lines.

Revisiting the situation discussed before, the behavior of RtlUnwind will now change.
Although the SEH record installed by Routine3 has been the top record when the exception
occurred, it is not the top record any more when the exception is dispatched. Noticing
this, RtlUnwind will now unwind the top record, which involves calling the unwind handler:
The auxiliary stack can now be properly unwound.

7.6.3.2 Non-Topmost Exception Handler Initiating an Unwind

The situation slightly changes when more than one exception registration is involved and
not the topmost, but rather a handler of one of the bottom registration records agrees to
handle the exception. This situation is illustrated in figure 7.5: Routine2 and Routine4
have been instrumented; Routine 5 raises an exception, Routine2 will finally handle the
exception. The handler of the topmost exception registration record (corresponding to
Routine4), which is the proxy exception handler, is invoked first. Like in the previous
example, it will set up a temporary registration record (not shown) and will delegate
the call to Handler2. However, Handler2 declines to handle the exception and returns
ExceptionContinueSearch.

Proceeding with the next exception registration record, the proxy exception handler is
called again. This time, however, a different auxiliary stack frame applies and the call
will be delegated to Handler1. Again, a temporary registration record is set up before
invoking the handler (shown with dashed lines). Handler1 agrees to handle the exception
and initiates an unwind by calling RtlUnwind.

As indicated before, RtlUnwind will walk the list of registration records once more. That
is, it will first invoke the handler associated with the topmost registration record, which,
again, is the proxy exception handler.

7.6. Exception Handling 63

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

ERR

ERR

Proxy Exception

Handler
PCR

Aux. Frame 1

Aux. Frame 2

Handler1

Handler2

CallOriginalHandler

...

ERR Unwind Handler

handled by

Figure 7.5: Bottom handler handling the exception

Unlike the previous call, however, the handler is requested to perform unwinding. In
this case, it will pop off the topmost auxiliary stack frame, and will delegate the call to
Handler2.

The next registration in the chain is the temporary registration installed before Handler2
was invoked. Its handler, the unwind handler, is invoked and will pop off the last outstanding
auxiliary stack frame, which is Frame 1. At this point, unwinding has been completed and
the auxiliary stack has properly been unwound.

7.6.3.3 Multiple Instrumented Routines Sharing a SEH Record

So far, only situations have been considered where the number of stack frames of instru-
mented routines, and thus the number of auxiliary stack frames, matched the number of
SEH registration records on the stack. When more than one auxiliary stack frame maps
onto a single SEH registration record, a slight variation of the scheme is required, as figure
7.6 suggests.

Module!Routine1

Module!Routine2

Module!Routine3

Module!Routine4

Module!Routine5

ERR

ERR

Proxy Exception

Handler
PCR

Aux. Frame 1

Aux. Frame 2

Aux. Frame 3

Handler1

Handler2

Figure 7.6: Multiple auxiliary stack frames mapping onto a single exception registration
record

If the respective registration record is found to already point to the proxy exception handler
(as in the case of Routine5), the handler is not replaced once again. Rather, the auxiliary
stack unwinding logic accounts for such situations: Instead of popping only the topmost
frame, a call to the unwind handler or the unwind part of the proxy exception handler
causes all frames up to and including the first frame containing a pointer to an original
exception handler routine to be popped. In the specific case depicted by figure 7.6, this
means that the auxiliary stack frames 2 and 3 would be unwound at once, while frame 1 is
unwound in isolation.

64 7. Implementation

7.6.3.4 Empty SEH Chain

Another situation that has been ignored so far is the possibility that no SEH record has
yet been installed when a traced routine is called. That is, the respective pointer in the
PCR contains the special value EXCEPTION_CHAIN_END.

In such situations, the scheme as discussed so far is not applicable. It is, however, also
not necessary to install an additional exception handler in this case: If no SEH record has
been installed and one of the functions indirectly called by the traced routine raises an
exception while still no SEH frame has been set up, this exception will necessarily be left
unhanded and lead to a bugcheck. The fact that an auxiliary stack frame has been leaked
is in this case of no real concern as the system is about to stop anyway.

As a consequence, if the PCR is found to not have a single exception registration record
registered, the entire process of installing an additional exception handler can safely be
skipped.

Finally, it is worth mentioning that the entire implementation is SafeSEH-conforming.

7.7 Event Handling

Besides the ability to capture events such as procedure entry and exit, a vital component
of a tracing solution is the handling of such events. Being in charge of recording, buffering
and persisting potentially large volumes of event information, event handling also plays a
critical role for the performance of a tracing solution.

Although exact numbers depend on the number of routines instrumented, tracing on the
level of routines must be assumed to generate significant amounts of data. Especially when
tracing is enabled for longer periods of time, storing event information in memory must
therefore be assumed to be too expensive in terms of resource consumption. Persisting the
information to secondary storage is clearly favorable.

Writing event information synchronously to disk from within the event callback routines
invoked on entry or exit of an instrumented routines can be assumed to be both prohibitive
for performance and reentrance reasons. An asynchronous approach – temporarily storing
the information in memory and having a background thread periodically write the data
back to disk – promises to be advantageous in both counts.

One implementation approach could thus be to collect event information in kernel mode
memory and having a user mode program collect the information data via appropriate
system calls or shared memory. Once retrieved, the program would write the data to a
trace file.

Utilizing the Windows NT kernel mode I/O API, however, it is possible for a kernel mode
component to directly access and write files, i.e. without having the data be relayed by
a user mode program. Requiring less system calls and less memory to be copied, this
approach can clearly be expected to be more efficient and has thus been chosen for NTrace.

7.7.1 Buffer Management

A variety of buffer management strategies exist for such asynchronous tracing approaches.
Not aiming to be exhaustive, a list of three basic approaches shall be briefly discussed:

• Maintaining buffer space shared among all processors and threads.

• Processor-private buffer space – each processor is assigned buffer space that may only
be used by code running on this processor.

7.7. Event Handling 65

• Thread-local buffer space – each thread is associated private buffer space.

Regarding synchronization, reentrance, ordering and anticipated cache behavior, each of
these approaches has its individual advantages and shortcomings.

7.7.1.1 Synchronization

Synchronizing access to buffer space among concurrently executing threads is required for
the approach utilizing a globally shared buffer. For processor-local and thread-local buffer
space, concurrent access cannot occur and synchronization is not required.

7.7.1.2 Reentrance

Although concurrent access cannot occur for the latter two approaches, they are, like the first
approach, prone to reentrance-related issues. Regardless of the individual implementation,
allocating and writing an entry to buffer space can be assumed to be non-atomic, i.e.
requiring multiple CPU instructions.

This non-atomicity can become a problem as soon as interruptions occur. Unless the
IRQL prevents it, interrupts, and, indirectly, Deferred Procedure Calls (DPC) as well as
Normal and Special Kernel Asynchronous Procedure Calls (APC) can interrupt code at
any time. Running on the same processor/thread, these routines could either themselves
be instrumented or may call instrumented routines. In either case, when the interrupted
routine has been in the midst of writing an entry to buffer space when it was interrupted,
reentrance will occur as soon as the interrupting routine attempts to write its first record
to buffer space.

In order to protect against corruption of such thread- or processor local resources, it is thus
vital for the respective code to properly deal with reentrance.

7.7.1.3 Ordering

In order to be of worth, event information as stored in buffer space and trace file must
obey a defined order. Only if ordering of events can be assumed, it is possible to derive
further information such as caller/callee-relations.

Whether total ordering of events across all processors and threads is required or not depends
on the individual application. If events such as context switches or lock acquisitions are
traced, which have a global impact, total ordering of events may be indispensable.

Routine calls are inherently thread-local, although for certain applications, seeing which
routines were executed concurrently may depict valuable information. For the majority
of use cases, however, it may be expected that threads will be inspected in isolation and
partial ordering, in which only events originating from the same thread are ordered w.r.t.
each other, is in fact sufficient.

If total ordering is required, using globally shared buffer space is the natural choice. By
the use of other means such as sequence numbers, it is, however, also possible to maintain
total order if separate buffer spaces are used, as in the case of CPU- or thread local buffers.
Yet, the latter two schemes may be expected to achieve their maximum efficiency when
only partial ordering is required.

7.7.1.4 Cache Behavior

If instrumented routines are called at a high frequency, the memory occupied by buffer
space can become a hot resource. While this is not problematic per se, it can lead to
inefficiencies on multiprocessor machines when the buffer space is shared among processors.

66 7. Implementation

If events are produced on several processors at roughly the same rate, certain cache lines will
repeatedly be updated from different processors in an alternating fashion. This, however,
can lead to bus contention and pipeline stalls, which in turn will induce a non-negligible
performance overhead [FP02]. Thread- or processor-local caches can be expected to exhibit
more beneficial cache behavior in this regard.

7.7.1.5 Implementation Choice

Concluding the brief discussion of buffering approaches, it is clear that each approach has
its individual strengths and weaknesses and neither is capable of suiting all needs. As such,
the choice of a buffering approach has not been hardwired in the core library. Rather, the
user of this library, which, in the architecture laid out, is the Kernel Function Boundary
Tracing Agent, decides on the buffering scheme to implement.

The WRK/WMK version is capable of leveraging the WMK infrastructure for event
buffering, which internally uses globally shared buffer space [SS07]. Not only will total
ordering of events be preserved in this case, the function boundary tracing events will also
be ordered with respect to the other events captured by the WMK such as context switches.

The version of the agent targeting the retail Windows kernel uses a custom buffering scheme,
following the approach of using thread-local buffer space providing partial ordering. When
the agent is loaded, a certain amount of equally-sized buffers is allocated from the non
paged pool and are kept in a global list, the free list. Typical buffer sizes range between 64
and 256 KB.

Free Buffers List

Dirty Buffers List

Buffer

Collector

Trace

File

Traced

Threads

Figure 7.7: Buffer Management Dynamics

Figure 7.7 illustrates the key idea of the implementation. As soon as an event is to be
written to buffer space, a buffer has to be obtained from the free list. Using atomic
operations, a buffer is removed from this list and attached to the current thread, where
it will be used until its space is exhausted. If the next event is to be stored, the existing
buffer is put on another global list, the dirty list and a new, empty buffer is obtained from
the free list.

Periodically, the buffer collector, a dedicated system thread, will take each buffer from the
dirty list and flush its content to the trace file. After reinitializing the buffer, it is re-added
to the free list.

A number of aspects of this approach are worth highlighting. Exclusively relying on inter-
locked SList functions, the entire buffer management implementation can be characterized
as being lock-free. Regarding cache behavior, the implementation limits interaction with
global memory to obtaining and releasing buffers. As one buffer is capable of holding
several thousand events, this interaction occurs on a less frequent basis. Finally, using

7.7. Event Handling 67

thread-local buffers allows storing certain information such as thread and process identifiers
once per buffer, rather than once per event record, which in turn helps cutting the size of
event data.

Finally, protection against reentrance issues is provided by the mechanism implemented by
the CallProxy and EntryThunk. This mechanism has been discussed in section 7.5.2.

7.7.2 Timing

In order to allow making judgments about timing behavior, trace events may include a
timestamp reflecting the time at which the routine entry or exit event was captured. Based
on these timestamps, the time elapsed during the invocation of a routine can be easily
calculated.

To be effective, the timer used for taking these timestamps should satisfy at least the
following requirements:

• Taking a timestamp should not induce a significant performance impact.

• Time should advance monotonically and at a constant rate.

• As many routines can be expected to complete in significantly less than 1 millisecond,
the timer resolution should be below 1 millisecond.

• Time as observed by different processors should be synchronous. Alternatively, the
clock skew should be bounded to a value small enough to not have a significant
impact on the correctness and value of time measurements.

Not aiming to be exhaustive, the following list shows the prevalent sources for timing
information offered by the Windows NT kernel API:

• System Time, available via KeQuerySystemTime.

• Tick Count, available via KeQueryTickCount.

• Interrupt Time, available via KeQueryInterruptTime.

• High Resolution Performance Counter, available via KeQueryPerformanceCounter.

• Bypassing the API, rdtsc can be used to obtain the Time Stamp Counter (TSC).

The first three sources all provide a resolution in the order of 10 milliseconds and are thus
unsuitable for obtaining the desired timestamps. KeQueryPerformanceCounter supports
fine-grained resolution, yet, the exact behavior of this routine depends on a number of
factors. KeQueryPerformanceCounter is part of the Hardware Abstraction Layer (HAL)
and its implementation differs between the uniprocessor and multiprocessor HAL. Moreover,
it may use different time sources depending on hardware configuration. Short of public
documentation on this topic, variations among operating system releases should also be
expected.

Potential time sources used by KeQueryPerformanceCounter include the ACPI timer (also
referred to as PM clock), rdtsc, and the 8254 Programmable Interval Timer2. As of
Windows Vista, the High Precision Event Timer (HPET) is also supported.

2Note that this information has been obtained from disassembly as no authorative information on this
topic seems to be available to date.

68 7. Implementation

Although KeQueryPerformanceCounter provides a clean abstraction of the inhomogene-
ity among hardware, this variance makes it hard to judge the applicability of the
function for the specific usage scenario. Assuming the 8254 timer is not being used,
KeQueryPerformanceCounter can be expected to execute quickly and provide sufficient pre-
cision. However, especially when the TSC is used (either via KeQueryPerformanceCounter
or directly by using rdtsc), it is crucial to notice that synchronicity is not guaranteed.

The TSC is maintained on a per-processor basis and is guaranteed to advance monotonically
[Int07d]. It is, however, crucial to notice that due to power management, significant skew
between the TSC values of different processors of a multiprocessor system may emerge
[Bru05].

If a thread is migrated from one processor to another while in the midst of performing time
measurements, this clock skew can easily render the timing measurements performed by
this thread meaningless. Worse yet, it is possible that the TSC of the second processor is
behind the TSC of the first processor, so that time has effectively went backwards for the
thread having migrated.

Unless such processor migrations are explicitly prohibited by using thread-affinity, neither
synchronicity nor monotonicity may thus be assumed for the TSC on a multiprocessor
machine.

A detailed discussion of the advantages and disadvantages of the various timers and
strategies to deal with clock skew is beyond the scope of this work. Despite its lack of
guarantees on multiprocessor machines, both KeQueryPerformanceCounter and rdtsc
have been used in practice for providing the timestamps. While achieving good results on
uniprocessor machines, the implication on multiprocessor machines is that timing results
become flawed as soon as TSC skew emerges.

7.7.3 Symbols

The most vital part of an event record is the information which routine has just been
entered or left and is thus the cause of the event. Hence, each event record contains the
virtual address (VA) of its corresponding routine.

Alternative options to handle this information would have been to use the relative virtual
address (RVA), i.e. the offset of the routine relative to the containing module’s load address
or the name string of the routine. The latter option would necessitate a certain amount of
symbol handling or maintenance of a mapping between addresses and names to be managed
in kernel space, which was undesired. Moreover, storing names requires significantly more
buffer space, which is a scarce resource.

Calculating the RVA requires a non-negligible amount of processing as well – which is
unfortunate for three reasons: Firstly, it slows down a code path that must be expected to
be executed at high frequency. Secondly, this processing may have to occur at elevated
IRQL – calling certain APIs to perform the calculation may thus not be feasible. Finally,
the additional processing would increase the danger of reentrance, as the API routines
called during the conversion process may themselves be instrumented.

The burden of converting from VA to RVA and finally to a name is thus put on the
application reading the trace file. For this to work, the trace file contains two critical
pieces of information for each module for which routines have been instrumented: The load
address, which is required for conversion between VA and RVA, and the debug information
of the module, which is part of the module’s PE image and is required for identifying
the symbol files exactly matching the module. Given this information, it is possible to
read a trace file and properly resolve all symbol information – even in the case where the
operating system release and file versions differ between the machine having produced and
the machine reading the trace file.

7.7. Event Handling 69

7.7.4 Call Nesting

The event records stored in the trace file should allow reconstructing the call flow and the
nesting of calls on each thread. For this to work, pairs of entry and exit event records
must be found that both correspond to a single routine execution. As event records are
written sequentially, finding these pairs should be possible solely based on their order in
the trace file (respecting the fact that entries may origin from different threads). Figure 7.8
illustrates this idea by showing a trace of a very simple program: A function Main calls
Foo, which in turn calls Bar.

..
.

Entry Foo

Entry Bar

Exit

Exit
..

.

Entry Main

Exit

Figure 7.8: Finding pairs of event records

This approach, however, fails as soon as events have to be dropped due to resource
constraints. When buffer space for storing event records is depleted and no empty buffer
space can be obtained, events have to be dropped. Picking up the previous example and
assuming that the exit event record for Bar could not be written due to memory shortage,
the resulting trace looks as illustrated in figure 7.9.

..
.

Entry Foo

Entry Bar

Exit

..
.

Entry Main

Exit

?

Figure 7.9: Finding pairs of event records in case of lost events

The fact that the count of entry and exit event records does not match any more indicates
exit event losses. Yet, based on this data, it is not possible to decide on which exit event
has in fact been lost. Not being able to properly match entry- and exit events any more
thwarts any attempts to correctly reconstruct nesting relationship among calls.

To avoid such situations from occurring, the implementation approach differs in that all
exit events include the routine address. As this address is not available any more during
call postprocessing, it is preserved as part of the auxiliary stack frame.

Having the routine address included in exit event records now allows sanity checks to be
made when reading the file. If a pair of entry and exit events does not have matching
addresses, it is safe to assume that at least one entry or exit event must have been lost
between these two records. To a certain extent, this even allows implying which events
must have been lost. Being able to simulate such events significantly improves the quality
of resulting trace analysis.

70 7. Implementation

7.8 Concluding Remarks on Runtime Code Modification

Employing runtime code modification, it is crucial for NTrace to properly address the
challenges of runtime code modification that have been discussed in chapter 4. Although
the mechanics used to overcome these challenges have already been considered in the
previous sections, they are worth being summarized.

Due to the focus on the IA-32 architecture and Windows NT using the flat memory model,
no special considerations regarding the memory model are necessary. Concerning memory
protection, however, NTrace has to deal with wrtite-protected portions of images. As
discussed in section 7.1.2, additional virtual address mappings are used to circumvent such
protection mechanisms.

NTrace also generates code during runtime – namely, the jump necessary to divert execution
from the original routine to the trampoline as well as the trampoline itself. Yet, this code
is used to override existing code, i.e. it is written to memory which can be assumed to
grant execute permissions already. As such, no special measures have to be taken in order
to comply with the restrictions of Data Execution Prevention.

As discussed in section 6.2, the jump used to divert execution to the trampoline uses a fixed
jump distance. The distance of the jump from the trampoline to the CallThunk, however,
varies depending on the location of the routine being instrumented and the load address
of the FBT agent driver. However, as both origin and target of the jump fall into kernel
virtual address space, the distance is guaranteed to be smaller than 2 GB in size. As 2 GB
also is the maximum distance supported by the near jump instruction used, jump-distance
related issues are avoided.

Regarding cross-modifying code and atomicity, NTrace follows the guidelines defined by
Intel [Int07c]. The implementation of the respective algorithm, which is based on the usage
of DPCs, has been discussed in section 7.1.2. Yet, usage of this algorithm alone does not
protect against the issues of concurrent execution (section 4.4.2) as well as preemption and
interruption (section 4.4.3).

During instrumentation, these issues are avoided by the fact that NTrace only replaces a
single instruction (the mov edi, edi) by an equally sized instruction. As the padding area
which is used to place the trampoline has to be considered dead code at this point, it is
not exposed to similar issues.

For uninstrumentation, the situation is slightly more complex, as two instructions have to
be replaced – the short jump with which the mov edi, edi has been overwritten and the
near jump located in the trampoline. However, as instruction boundaries remain intact,
the only additional condition that has to be regarded is the following:

• Thread A is interrupted or preempted while running an instrumented routine. The
thread has successfully executed the initial jump to the trampoline, but has not yet
run the jump instruction defined by the trampoline itself.

• Thread B performs an uninstrumentation of the respective routine.

• Thread A is resumed and will run whichever code now resides in the padding area.

This situation, however, could be mitigated with the help of a nop sled. When the trampoline
is revoked, i.e. the jump instruction is removed from the padding area of the respective
routine, the freed space is filled with nop instructions. Regarding the previous situation,
Thread A would, after resuming, in this case safely execute five nop instructions before
re-entering the routine.

7.8. Concluding Remarks on Runtime Code Modification 71

If, however, the respective routine is instrumented again while one of the threads is
still running the nop sled, this algorithm would in fact not be not safe any more. It is
therefore more beneficial to use a single forward near jump instruction rather than five nop
instructions so that instruction boundaries remain intact.

Due to the nature of hotpatchable images and runtime code modification being limited to
specific instructions only, a situation where a basic block boundary is accidently overwritten
is avoided from occurring.

NTrace does not employ stack walking in the sense of inspecting the call stack. For
instrumentation, such checks are not necessary as instrumentation can be performed
regardless of the instruction pointers and return addresses used by other threads. For
uninstrumentation, only the auxiliary stack, but not the call stack is inspected – a mechanism
that has been discussed in section 7.4. NTrace therefore is not affected by the safety concerns
regarding Stack Walking.

Finally, Disassembly as employed by NTrace is limited to validating the instrumentability of
a routine. For these checks, it is merely necessary to perform simple memory comparisons.
Any of the disassembly-related concerns such as the challenge of discerning code from data
as well as dealing with variable instruction lengths do not apply.

72 7. Implementation

Part III

Analysis

75

8 Performance Measurements

Performance is an important factor for the applicability of a dynamic tracing system. In
order to allow assessing the performance properties of NTrace in more detail, a number of
measurements will be discussed in the following sections.

Tracing the execution of a software system constitutes additional work that has to be
performed. For a tracing system aiming to exhibit decent performance, this additional
work, the runtime overhead, clearly should be as small as possible and therefore depicts
the prevalent figure for performance assessment. Referring back to the criteria discussed in
section 2, the runtime overhead can therefore be seen as determining the frugality of the
system.

Another aspect closely related to runtime overhead is scalability, i.e. the question how
the performance and overhead evolves when the number of instrumented routines, or the
number of processors rises.

To address these two aspects of performance, a simple benchmark has been developed and
performed.

8.1 Benchmark

The total overhead of the tracing system is influenced by a number of factors. Among them
are the total number of routines instrumented, the rate at which instrumented routines are
hit and the average length of an instrumented routine. Without taking such factors into
consideration, the overhead cannot be quantified properly.

Rather than striving at a universal estimate of the runtime overhead, the overhead is hence
measured in relation to the number of events generated for a given workload. This figure is
indirectly influenced by the number of routines instrumented and their hit rate.

To gather meaningful data, the system has been observed while being occupied with a
large build job. This workload has been chosen for generating a significant amount of I/O –
and thus system calls – as well as involving frequent process startups and tear downs. The
build job consisted of performing a full rebuild of the Windows Research Kernel sources.
Five builds were performed during each run.

To give an impression of the runtime characteristics of this workload, figure 8.1 shows
the distribution of traced routines, grouped by prefixes, for a single WRK build with full
instrumentation on the kernel image.

8.1.1 System

All test runs have been performed on a Windows Server 2003 SP2 system, using a retail
kernel (free build). The system has been equipped with an Intel Core 2 Quad Q6600 2.4
GHz Quad-Core Processor, 2 GB of RAM and a single 465 GB SATA hard disk. In order
to discern tracing-related disk accesses from other disk accesses, a dedicated hard disk
partition has been used for storing the trace files.

The system ran without kernel debugger attached and Driver Verifier disabled for all drivers.
After each test run, the system was rebooted. For the tracing solution itself, the free build,
i.e. a non-debug, optimized build was used for all tests. Finally, a total of 512 buffers, each
roughly 256 KB in size, has been used for the internal buffer management.

76 8. Performance Measurements

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

Ex Mi Io Ob Se Cc Fs Ke Rtl Ps (rest)

Figure 8.1: Distribution of traced routines for a single WRK build

8.1.2 Performance Counters

In order to observe the test runs in more detail, performance counters were used. The
FBT Layer DLL has been augmented to serve as a performance counter DLL, retrieving
performance data from the FBT Agent. The supported performance counters are:

• Instrumented Routines Count: The current number of instrumented routines.
• Buffers (Free): Number of free event data buffers in pool.
• Buffers (Dirty): Number of dirty event data buffers waiting to be flushed to disk.
• Buffers (Collected): Number of event data buffers written to disk.
• Prealloc. Pool (Free): Number of free preallocated ThreadData structures.
• Prealloc. Pool (Failed Allocations): Failed allocations from the ThreadData preallo-

cated pool.
• Reentrant executions (Delta): Number of times an event could not be captured

because of reentrance (See chapter 7.5.2)
• Events dropped (Entry, Delta): Dropped entry events because of buffer depletion.
• Events dropped (Exit, Delta): Dropped exit events because of buffer depletion.
• Events dropped (Unwind, Delta): Dropped exception unwind events because of buffer

depletion.
• Image Infos dropped (Delta): Dropped image information chunks because of buffer

depletion.
• Failed chunk flushes (Delta): Number of ‘chunks’, i.e. packets of trace data that

failed to be flushed to disk.
• Events captured: Total number of entry, exit, and unwind events captured1.
• Events captured (Delta): Entry, exit, and unwind events captured during last sampling

interval.
• Exception unwindings: Total number of auxiliary stack unwindings. See chapter

7.6.3.
• Thread Tear downs: Number of threads having exited, requiring a ThreadData tear

down.

The FBT Agent delivers absolute figures only. All delta values are calculated by the
performance counter infrastructure based on these absolute figures.

Figure 8.2 shows an example screen shot of the Windows Performance Monitor displaying
data from one of the recorded counter logs.

1Note that the values are exact to multiples of 1000 only. To avoid cache line thrashing, events are
counted thread locally. Not before 1000 events have been captured on a given thread is the global counter
updated. Therefore, the last three digits of the global counter value are always zero.

8.1. Benchmark 77

Figure 8.2: Performance Monitor showing selected performance counters from a test run
comprising five WRK builds with instrumentation on nt!* (i.e. full instrumentation)

All these performance counters, along with the Windows-provided counters Logical
Disk\Disk Write Bytes/sec (for the partition containing the trace file) and Processor\%
Processor Time have been collected for all testruns using a Counter Log with a sampling
interval of 1 second.

As retrieving the counter data from the FBT agent involves additional I/O processing
that may influence the overall results, all counters have also been recorded for the baseline
measurements.

The process of managing performance counters and instrumentation as well as starting the
build job and measuring elapsed time has been automated in order to avoid unnecessary
impact of manual intervention. Still, due to the existence of other processes and numerous
background tasks on a Windows system, the results must be expected to reproducible to a
certain degree only.

Concurrently running processes such as services must be expected to routinely perform
system calls as well. Such system calls, however, may invoke instrumented routines and
may thus impact the performance counter statistics. Given that the timing behavior of the
various processes is unknown, their behavior must be expected to vary among different test
runs. As a result, the exact performance counter results must be expected to vary as well.
Still, this impact is assumed to be of minor significance and is thus ignored in the following
discussion.

8.1.3 Test runs

Three types of test runs have been conducted:

• Kernel, capturing only: The kernel image has been instrumented to various degrees
and the events have been captured. Once captured, however, the events were dropped

78 8. Performance Measurements

immediately. That is, events have not been written to a buffer and have not been
written to disk. The results from this run therefore show how much overhead the
capturing itself introduces.

• Kernel, with writing to disk. Again, the kernel image has been instrumented to
various degrees. Events were handled by the buffer management and finally written to
disk. The results from this run therefore show the overall overhead of both capturing
and persisting the event data.

• Driver, with writing to disk. Not the kernel, but a driver has been instrumented.
Having chosen ntfs.sys, the driver implementing the NTFS file system, as target,
the rationale behind this test run is merely to show that certain drivers may yield
substantially different figures, especially with regard to exception unwinding.

Handling and writing event data to disk clearly imposes additional overhead, so that the
total overhead in the respective test runs will necessarily be higher. There is, however, an
additional point to notice: The code used to perform the task of writing event data to disk
itself makes use of kernel routines such as those of the I/O manager. In some test runs,
these routines have been instrumented, so that writing events to disk generates additional
events. Handling these additional events, however, will again increase the workload and
lead to a higher total overhead.

In those test runs where event data is flushed to disk, the buffer management system
discussed in section 7.7.1.5 is used. Due to its asynchronous nature and its, albeit limited
and lock-free, synchronized use of globally shared resources, a slightly increased degree
of variability and non-determinism should also be expected in the runtime behavior and
timing measurement results.

To observe the behavior of the system for different degrees of instrumentation, ten sets
of routines to be instrumented have been compiled. However, as not the sheer number
of routines instrumented but rather the number of events generated is significant for
performance measurements, these sets have not been chosen based on their size but on the
anticipated number of events generated.

The first set contains all instrumentable routines of the kernel image. Based on the
number of events generated by a WRK build using this instrumentation set, and taking the
distribution among routine prefixes illustrated in figure 8.1 into account, nine additional
routine sets have been defined. Comprising only a subset of the instrumentable routines,
each set has been chosen so that it roughly generates a certain fraction of the maximum
number of events. Table 8.1 lists these sets, along with their estimated percentage of events
generated in relation to full instrumentation.

8.1.4 Results

The following three tables show the raw results of the test runs performed.

Based on these raw numbers, a number of basic observations can be made:

• Although the workload has been the same for all runs, the figure Thread Tear downs
varies slightly. This must be expected to be a result of the existence of background
tasks and other activity on the system.

• Comparing the Time and Events/sec (non reentrant) figures of table 8.2 with those
of table 8.3, shows that the effort required to handle and write the event data to disk
is non negligible: Builds take significantly longer and as a consequence, the event
rate is lower when events are written to disk.

8.1. Benchmark 79

Table 8.1: Instrumentation Sets
Name Set (Prefixes) Estimated output Number of

(relative to full routines
instrumentation)

S0(baseline) (none) 0% 0
S10 Se 10% 182
S20 Io 20% 685
S30 Io, Ob 30% 813
S40 Ex, Mi 40% 681
S50 Ex, Mi, Ob 50% 809
S60 Ex, Mi, Io 60% 1365
S70 Ex, Mi, Io, Se 70% 1546
S80 Ex, Mi, Io, Se, Ob 80% 1674
S90 Ex, Mi, Io, Se, Ob, Fs, Cc 90% 1995
S100 * 100% 5131

Table 8.2: Measurements: Kernel, capturing only
Set Time Trace Events/sec Events total Thread Excep. Reentran- Logical

[ms] size (non (non tear- Un- cies Disk
[MB] reentrant) reentrant) downs winds [KB/sec]

S0 397,941 0 N/A N/A N/A N/A N/A N/A

S10 442,263 N/A 899,254 398,381,000 1,611 0 4 N/A
S20 467,365 N/A 1,359,319 636,293,000 1,630 0 978 N/A
S30 515,550 N/A 2,106,662 1,087,088,000 1,647 0 516 N/A
S40 537,817 N/A 1,714,889 922,708,000 1,672 0 710,437 N/A
S50 592,178 N/A 2,286,698 1,356,510,000 1,649 0 932,404 N/A
S60 603,683 N/A 2,487,878 1,505,372,000 1,625 0 951,276 N/A
S70 669,022 N/A 2,909,408 1,949,586,000 1,668 0 1,176,915 N/A
S80 728,015 N/A 3,288,097 2,397,390,000 1,671 0 1,322,195 N/A
S90 761,557 N/A 3,416,100 2,607,018,000 1,683 0 1,400,906 N/A
S100 884,868 N/A 3,290,311 2,915,831,000 1,703 1 2,702,529 N/A

Table 8.3: Measurements: Kernel, with writing to disk
Set Time Trace Events/sec Events total Thread Excep. Reentran- Logical

[ms] size (non (non tear- Un- cies Disk
[MB] reentrant) reentrant) downs winds [KB/sec]

S0 397,941 0 N/A N/A N/A N/A N/A N/A

S10 497,419 6,143 802,811 398,423,000 1,610 0 4 12,943
S20 660,023 10,030 994,044 651,895,000 1,643 0 53 15,900
S30 884,267 17,168 1,269,215 1,115,821,000 1,688 0 454 20,297
S40 783,479 16,967 1,407,650 1,100,520,000 1,665 0 603,830 70,252
S50 1,064,575 25,317 1,544,235 1,649,048,000 1,686 0 653,136 24,703
S60 1,026,918 28,464 1,869,531 1,919,400,000 1,695 0 750,117 28,953
S70 1,453,399 37,063 1,689,525 2,418,062,000 1,681 0 712,852 26,273
S80 1,648,374 45,775 1,880,908 2,987,434,000 1,715 0 789,757 28,368
S90 1,566,561 52,347 2,181,138 3,416,633,000 1,677 0 937,571 28,369
S100 1,869,358 60,773 2,134,650 3,967,796,000 1,677 0 1,824,291 33,243

• Regarding the number of reentrances, there is a sharp rise between S30 and S40 (see
figure 8.3). S30 includes nt!Io* and nt!Ob*, S40 comprises nt!Ex* and nt!Mi*. It is
the latter set of routines, nt!Mi*, that may be expected to be the cause of this rise:
These routines, part of the Memory Manager, are frequently invoked from within trap
and interrupt handlers. As such, reentrance is more likely to occur in this routine set
than it is in other sets.

80 8. Performance Measurements

Table 8.4: Measurements: Ntfs.sys, with writing to disk
Set Time Trace Events/sec Events total Thread Excep. Reentran- Logical

[ms] size (non (non tear- Un- cies Disk
[MB] reentrant) reentrant) downs winds [KB/sec]

S0 397,941 0 N/A N/A N/A N/A N/A N/A

S100 1,085,506 24,011 1,447,219 1,589,072,000 1,482 12,251 1,449,883 23,045

• While exception unwinds are very rare when tracing the kernel itself, ntfs.sys obviously
makes frequent use of exceptions and unwinds. With more than 10 unwinds per
second in average, this also stresses the importance of the tracing system to properly
deal with SEH.

35%

40%

45%

50%

0%

5%

10%

15%

20%

25%

30%

35%

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

Kernel,

capturing only

Kernel, with

writing to disk

Figure 8.3: Percentage of events dropped due to reentrance

By relating the figures obtained by the various test runs with those obtained by the baseline
measurement, it is possible to calculate the overhead imposed by the tracing activity:

• Total Overhead : Percentage by which the total run time has increased.

• Overhead/100 M events: Overhead in relation to the number of events generated,
i.e. percentage by which the total run time has increased for each 100 million events
handled. Events dropped due to reentrance are ignored by this figure.

• Avg. Time/event : Average time value, in nanoseconds, by which the total run time
has increased for each event handled. Again, events dropped due to reentrance are
ignored by this figure.

Table 8.5: Measurements: Overhead
Kernel, capturing only Kernel, with writing to disk

Total Overhead/ Avg. Time/ Total Overhead/ Avg. Time/
Overhead 100 M events event [ns] Overhead 100 M events event [ns]

S10 11.14% 2.80% 111 25.00% 6.27% 249
S20 17.45% 2.74% 109 65.86% 10.10% 402
S30 29.55% 2.72% 108 122.21% 10.95% 435
S40 35.15% 3.81% 151 96.88% 8.80% 350
S50 48.81% 3.60% 143 167.52% 10.16% 404
S60 51.70% 3.43% 136 158.06% 8.23% 327
S70 68.12% 3.49% 139 265.23% 10.97% 436
S80 82.95% 3.46% 137 314.23% 10.52% 418
S90 91.37% 3.50% 139 293.67% 8.60% 342
S100 122.36% 4.20% 166 369.76% 9.32% 370

8.1. Benchmark 81

250%

300%

350%

400%

Kernel,

0%

50%

100%

150%

200%

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

Kernel,

capturing only

Kernel, with

writing to disk

Figure 8.4: Total Overhead

8%

10%

12%

Kernel,

0%

2%

4%

6%

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

Kernel,

capturing only

Kernel, with

writing to disk

Figure 8.5: Overhead for each 100 million events handled

300

350

400

450

500

Kernel,

0

50

100

150

200

250

300

S10 S20 S30 S40 S50 S60 S70 S80 S90 S100

Kernel,

capturing only

Kernel, with

writing to disk

Figure 8.6: Average overhead for each event handled, in nanoseconds

Figure 8.4 shows the Total Overhead in relation to different routine sets. With full
instrumentation on the kernel image, the build process slows down by roughly 122%. When
the event data is also flushed to disk, the overhead increases to 369%.

The fact that the overhead rises with an increasing number of events handled certainly
does not come at a surprise. Yet, it is notable that the overhead evolves gracefully, i.e.
almost linearly. The diagram also underlines what has been indicated before – that those
measurements involving writing event data to disk show higher variability.

82 8. Performance Measurements

However, figure 8.4 does not yet express in how far the overhead of handling a single event
is dependent on the total number of events captured. For the solution to be scalable, it
is crucial that the overhead evolves gracefully when the total number of events increases.
That is, the overhead per event should not rise significantly.

The diagrams 8.5 and 8.6 show how the overhead per event evolves. With an increasing
number of total events captured, the overhead per single event indeed increases, yet only
slightly.

To explain this rise, it is important to notice that the events dropped due to reentrance
impose an overhead, yet are not regarded by these numbers. In fact, comparing the
respective graphs of these two figures with the those of figure 8.3, there is a remarkable
similarity to be noticed: Between S30 and S40 as well as between S90 and S100, there is a
steep incline in all graphs.

To yield more exact figures, the overhead imposed by events that have been dropped
due to reentrace would need to be factored in. This, however, is problematic to achieve
as the overhead imposed by a reentrant event is less than the overhead of a properly
captured event. Nonetheless, it is safe to assume that the rise is at least partially caused
by reentrance.

Finally, although less smooth, the graphs illustrating the overhead when events are addi-
tionally written to disk evolve gracefully in all diagrams as well. This may be interpreted
as an indication for that the buffer management and disk flushing activity does not suffer
from any serious performance bottlenecks.

83

9 Conclusion

Dynamic function boundary tracing of kernel mode components has many potential appli-
cations, yet its potentials have largely been dormant on the Windows NT platform.

This thesis has presented an overview and has proposed a classification scheme covering
techniques that may be used for implementing such tracing systems. With the creation of
NTrace, we demonstrated that implementing such a tracing system for Windows NT is in
fact technically feasible.

In addition to that, we have shown that it is possible for a tracing system to integrate
with Windows Structured Exception Handling. Besides allowing the system to attain
exception safety, such integration also adds significant value to the tracing results as it
allows exception unwinds, like function entry and exit events, to be properly traced.

Utilizing synergy effects with the Microsoft Hotpatching infrastructure, NTrace also has
shown that the challenges of runtime code modification can be successfully overcome.

Although the exact requirements on a tracing solution vary with the individual purpose,
the general aims of creating a system that is detailed, frugal, and scalable could hence be
achieved.

Limitations and Outlook

The focus of NTrace has clearly lied on capturing trace information while maintaining
reasonable performance. As such, the system should primarily be seen as providing the
foundation for tools offering features going beyond mere recording of trace information.
Such features could include the ability to filter events – such as by limiting the capturing
to certain threads only – as well as the capability to record parameter information. Other
tools, such as profilers, are equally conceivable.

But there certainly are also aspects to the current implementation of NTrace that leave
room to improvement. Currently, the most important limitation can be seen in the relatively
high loss rate of events due to reentrace. While the current implementation has proven to
be able to avoid reentrace-caused hazards, the window of instructions of the CallProxy and
EntryThunk in which reentrace leads to events being dropped is still larger than necessary.
By optimizing and restructuring the respective assembly code, however, the author expects
that the drop rate should be able to be lowered significantly.

Much of the implementation of NTrace is both workable in kernel and in user mode. In fact,
the entire FBT core library has been implemented and tested for either mode. As such,
creating the additional tool support to add the capability to trace user mode processes
seems highly auspicious in order to increase the potential fields of application for NTrace.

Finally, NTrace is currently limited to the IA-32 architecture. Although a non-negligible part
of the implementation – such as instrumentation and exception handling – is architecture-
specific, porting NTrace to AMD64 seems viable, albeit not trivial. Notwithstanding their
common heritage, AMD64 poses different challenges on such an implementation. For
instance, while being slightly more forgiving with regard to runtime code modification, the
increased address space brings up the issues of jump distances again. Moreover, leveraging
hotpatchable images on AMD64 requires a certain, although limited amount of disassembly
to be performed at runtime. PatchGuard [Cor07], the facility of AMD64 Windows kernels
to prevent certain code modifications at runtime, poses another challenge to such porting
efforts. That is, NTrace on AMD64 would likely be limited to tracing drivers, while not
being able to trace the kernel itself as well the system images hal and ndis [Joh05]. Still,
such porting effort could further enlarge the applicability of NTrace.

84 9. Conclusion

Bibliography 85

Bibliography

[Arn08] Jeffrey Brian Arnold. Ksplice: An automatic system for rebootless Linux kernel
security updates. 2008.

[AVAU88] Ravi Sethi Alfred V. Aho and Jeffrey D. Ullman. Compilers. Principles,
Techniques, and Tools. Addison-Wesley, 1988.

[BC05] D. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly, 2005.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementa-
tion, pages 1–12, New York, NY, USA, 2000. ACM.

[BH99] D. Brubacher and G. Hunt. Detours: Binary Interception of Win32 Functions.
Proceedings of the 3rd USENIX Windows NT Symposium, pages 135–143, 1999.

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. An api for runtime code patching.
Int. J. High Perform. Comput. Appl., 14(4):317–329, 2000.

[Box98] Don Box. Essential COM. Addison Wesley, 1998.

[Bro99a] Keith Brown. Building a Lightweight COM Interception Framework, Part
I: The Universal Delegator. Microsoft Systems Journal, Vol 14 No 1,
1999. URL http://www.microsoft.com/msj/0199/intercept/intercept.
aspx, retrieved 10.04.2008.

[Bro99b] Keith Brown. Building a Lightweight COM Interception Framework, Part
II: The Guts of the UD. Microsoft Systems Journal, Vol 14 No 2, 1999.
URL http://www.microsoft.com/msj/0299/intercept2/intercept2.aspx,
retrieved 10.04.2008.

[Bru04] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[Bru05] R. Brunner. TSC and Power Management Events on AMD Processors, 2005.
URL http://lkml.org/lkml/2005/11/4/173, retrieved 3.06.2008.

[CK94] Robert Cmelik and David Keppel. Shade: A fast instruction-set simulator
for execution profiling. ACM SIGMETRICS Performance Evaluation Review,
22(1):128–137, May 1994.

[Clo01] Shaun Clowes. Modifying and spying on running processes under linux and so-
laris, 2001. URL http://www.blackhat.com/presentations/bh-europe-01/
shaun-clowes/bh-europe-01-clowes.ppt, retrieved 17.09.2008.

[CM] Cristina Cifuentes and Vishv Malhotra. Binary translation: Static, dynamic,
retargetable?

[Com95] TIS Committee. Tool interface standard (tis) executable and linking format
(elf) specification, version 1.2, 1995.

[Cor97] International Business Machines Corporation. OS/2 Warp 4 fixpack
4, readme.dbg, 1997. URL http://hobbes.nmsu.edu/pub/os2/system/
patches/fixpack/warp_4/xr_m004/readme.dbg, retrieved 17.04.2008.

http://www.microsoft.com/msj/0199/intercept/intercept.aspx
http://www.microsoft.com/msj/0199/intercept/intercept.aspx
http://www.microsoft.com/msj/0299/intercept2/intercept2.aspx
http://lkml.org/lkml/2005/11/4/173
http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-clowes.ppt
http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-clowes.ppt
http://hobbes.nmsu.edu/pub/os2/system/patches/fixpack/warp_4/xr_m004/readme.dbg
http://hobbes.nmsu.edu/pub/os2/system/patches/fixpack/warp_4/xr_m004/readme.dbg

86 Bibliography

[Cor06a] Microsoft Corporation. A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition
2005, and Windows Server 2003 (Knowledge Base Aricle 875352), 2006. URL
http://support.microsoft.com/kb/875352, retrieved 14.05.2008.

[Cor06b] Microsoft Corporation. Visual Studio, Microsoft Portable Executable and
Common Object File Format Specification. Windows Harware Developer
Central, 2006. URL http://www.microsoft.com/whdc/system/platform/
firmware/PECOFF.mspx, retrieved 11.04.2008.

[Cor07] Microsoft Corporation. Patching Policy for x64-Based Systems. Windows
Harware Developer Central, 2007. URL http://www.microsoft.com/whdc/
driver/kernel/64bitpatching.mspx, retrieved 10.04.2008.

[Cor08a] Microsoft Corporation. DbgHelp Reference, 2008. URL http://msdn.
microsoft.com/en-us/library/ms679292.aspx, retrieved 09.07.2008.

[Cor08b] Microsoft Corporation. Debugging Tools for Windows, 2008. URL http:
//www.microsoft.com/whdc/devtools/debugging/default.mspx, retrieved
09.07.2008.

[Cor08c] Microsoft Corporation. Driver Verifier, 2008. URL http://www.microsoft.
com/whdc/DevTools/tools/DrvVerifier.mspx, retrieved 14.05.2008.

[CSL04] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the annual conference
on USENIX Annual Technical Conference, pages 2–2, 2004.

[Dev07] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume
2: System Programming, 2007.

[DMS06] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Avoiding Software Vulnerabilities. Addison-Wesley,
2006.

[EEL+97] Susan J. Eggers, Joel Emer, Henry M. Levy, Jack L. Lo, Rebecca Stamm, and
Dean M. Tullsen. Simultaneous multithreading: A platform for next-generation
processors, September/October 1997.

[Eil05] Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley Publiching,
2005.

[FP02] M. Friedman and O. Pentakalos. Windows 2000 Performance Guide. O’Reilly,
2002.

[Gar02] Garret J. Buban, V. Donlan, Adrian Marinescu, Thomas D. McGuire, B.
Probert, H. Vo, Zheng Wang. Patent 20040107416: Patching of in-use functions
on a running computer system, 2002.

[HB05] Greg Hoglund and James Butler. Rootkits: Subverting the Windows Kernel.
Addison Wesley, 2005.

[Hir05] Masami Hiramatsu. Overhead Evaluation about Kprobes and Djprobe
(Direct Jump Probe), 2005. URL http://lkst.sourceforge.net/docs/
probes-eval-report.pdf, retrieved 17.09.2008.

http://support.microsoft.com/kb/875352
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx
http://msdn.microsoft.com/en-us/library/ms679292.aspx
http://msdn.microsoft.com/en-us/library/ms679292.aspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx
http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx
http://lkst.sourceforge.net/docs/probes-eval-report.pdf
http://lkst.sourceforge.net/docs/probes-eval-report.pdf

Bibliography 87

[HMC94] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program
instrumentation for scalable performance tools. Technical Report CS-TR-1994-
1207, 1994.

[HMG+97] Jeffrey K. Hollingsworth, Barton P. Miller, M. J. R. Goncalves, Oscar Naim,
Zhichen Xu, and Ling Zheng. MDL: A language and compiler for dynamic
program instrumentation. In IEEE PACT, 1997.

[Int02] Intel. Intel Pentium III Xeon Processor Specification Update, 2002.

[Int07a] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, volume 1:
Basic Architecture. Intel Corporation, 2007.

[Int07b] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, volume
3B: System Programming Guide, Part 2. Intel Corporation, 2007.

[Int07c] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, volume
3A: System Programming Guide, Part 1. Intel Corporation, 2007.

[Int07d] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, volume
2B: Instruction Set Reference, N–Z. Intel Corporation, 2007.

[Joh05] Ken Johnson. Bypassing PatchGuard on Windows x64. Uninformed, Volume 3,
2005. URL http://uninformed.org/index.cgi?v=3&a=3&t=sumry, retrieved
15.08.2008.

[Joh06] Ken Johnson. Anti-Virus Software Gone Wrong. Uninformed, Volume 4, 2006.
URL http://www.uninformed.org/?v=4&a=4&t=sumry, retrieved 10.04.2008.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 190–200, New York, NY, USA,
2005. ACM.

[Lem99] Dmitri Leman. Spying on COM Objects. Dr Dobb’s Journal, July 1999 Is-
sue, 1999. URL http://www.ddj.com/windows/184416546?pgno=5, retrieved
14.04.2008.

[Lem00] Dmitri Leman. Tracing NT Kernel-Mode Calls. Dr Dobb’s Journal, April 2000
Issue, 2000. URL http://www.ddj.com/showArticle.jhtml?articleID=
184416246, retrieved 10.04.2008.

[Mas07] Masami Hiramatsu and Satoshi Oshima. Djprobe – Kernel probing with the
smallest overhead. In Proceedings of the Linux Symposium, Volume One, pages
189–199, 2007.

[Mic07] Sun Microsytems. UltraSPARC Architecture 2005, volume Draft D0.9, Privilege
Levels: Privileged and Nonprivileged. Sun Microsystems, Inc., 2007.

[MJ07] Matt Miller and Ken Johnson. A Catalog of Windows Local Kernel-mode Back-
door Techniques. Uninformed, Volume 8, 2007. URL http://www.uninformed.
org/?v=8&a=2&t=sumry, retrieved 10.04.2008.

[Mol08] Ingo Molnar. what’s up for v2.6.25 in x86.git. Linux Kernel Mailing List,
2008. URL http://kerneltrap.org/mailarchive/linux-kernel/2008/1/
21/588524, retrieved 14.04.2008.

http://uninformed.org/index.cgi?v=3&a=3&t=sumry
http://www.uninformed.org/?v=4&a=4&t=sumry
http://www.ddj.com/windows/184416546?pgno=5
http://www.ddj.com/showArticle.jhtml?articleID=184416246
http://www.ddj.com/showArticle.jhtml?articleID=184416246
http://www.uninformed.org/?v=8&a=2&t=sumry
http://www.uninformed.org/?v=8&a=2&t=sumry
http://kerneltrap.org/mailarchive/linux-kernel/2008/1/21/588524
http://kerneltrap.org/mailarchive/linux-kernel/2008/1/21/588524

88 Bibliography

[Moo01] Richard Moore. A Universal Dynamic Trace for Linux and other Operating
Systems. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[MPK06] Ananth Mavinakayanahalli, Prasanna Panchamukhi, and Jim Keniston. Probing
the guts of kprobes. In Proceedings of the Linux Symposium, Volume Two,
pages 101–115, 2006.

[Neb00] Gary Nebbett. Windows NT/2000 Native API Reference. MTP, 2000.

[Net04] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, Trinity College, University of Cambridge, 2004.

[OMCB07] Marek Olszewski, Keir Mierle, Adam Czajkowski, and Angela Demke Brown.
Jit instrumentation: a novel approach to dynamically instrument operating
systems. In EuroSys ’07: Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 3–16, New York, NY, USA, 2007.
ACM.

[PDB99] Sandeep Phadke Prasad Dabak and Milind Borate. Undocumented Windows
NT. Wiley & Sons, 1999.

[Pea00] David Pearce. Instrumenting the linux kernel. Masterthesis, Imperial College,
2000.

[Pie97] Matt Pietrek. A Crash Course on the Depths of Win32Structured Exception
Handling, 1997. URL http://www.microsoft.com/msj/0197/Exception/
Exception.aspx, retrieved 24.06.2008.

[PKFH02] David J. Pearce, Paul H.J. Kelly, Tony Field, and Uli Harder. GILK: A
dynamic instrumentation tool for the Linux Kernel. In Proceedings of the 12th
International Conference on Computer Performance Evalution, 2002.

[PP06] Andreas Polze and Dave Probert. Teaching operating systems: the Windows
case. In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 298–302, New York, NY, USA, 2006. ACM
Press.

[RC97] Mark Russinovich and Bryce Cogswell. Tracing NT Kernel-Mode Calls.
Dr Dobb’s Journal, January 1997 Issue, 1997. URL http://www.ddj.com/
184410109, retrieved 10.04.2008.

[Res03] OSR Open Systems Resources. OSR’s IRPTracker – Tracking the Life of an
IRP in Detail, 2003.

[Rob03] John Robbins. Debugging Applications for Microsoft .NET and Microsoft
Windows. Microsoft Press, 2003.

[RR03] K Robbins and S. Robbins. UNIX Systems Programming. Prentice Hall, 2003.

[SDA02] B. Schwarz, S. Debray, and G. Andrews. Disassembly of executable code
revisited, 2002.

[SEV01] Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary Trans-
formation in a Distributed Environment. Technical Report MSR-TR-2001-50,
2001.

http://www.microsoft.com/msj/0197/Exception/Exception.aspx
http://www.microsoft.com/msj/0197/Exception/Exception.aspx
http://www.ddj.com/184410109
http://www.ddj.com/184410109

Bibliography 89

[SR04] D. Solomon and M. Russinovich. Windows Internals. Microsoft Press, 4 edition,
2004.

[SS07] Alexander Schmidt and Michael Schöbel. Analyzing System Behavior: How the
Operating System Can Help. In Workshop on Applied Program Analysis, 2007.

[Tam01] Ariel Tamches. Fine-Grained Dynamic Instrumentation of Commodity Operat-
ing System Kernels. PhD thesis, University of Wisconsin-Madison, 2001.

[Thi99] Peter Thiemann. Higher-order code splicing. In European Symposium on
Programming, pages 243–257, 1999.

[TM99] Ariel Tamches and Barton P. Miller. Fine-grained dynamic instrumentation
of commodity operating system kernels. In Operating Systems Design and
Implementation, pages 117–130, 1999.

[Val07] Valgrind’s Tool Suite, 2007. URL http://valgrind.org/info/tools.html,
retrieved 23.04.2008.

[Var05] Vara Prasad, William Cohen, Frank Ch. Eigler, Martin Hunt, Jim Keniston
and Brad Chen. Locating System Problems Using Dynamic Instrumentation.
In Proceedings of the Linux Symposium, pages 49–64, 2005.

[Wys08] Rafael J. Wysocki. Freezing of tasks, 2008. URL http://www.
mjmwired.net/kernel/Documentation/power/freezing-of-tasks.txt, re-
trieved 18.04.2008.

http://valgrind.org/info/tools.html
http://www.mjmwired.net/kernel/Documentation/power/freezing-of-tasks.txt
http://www.mjmwired.net/kernel/Documentation/power/freezing-of-tasks.txt

90 Bibliography

I hereby affirm that I have written this master thesis independently, without using any
sources other than those stated.

Berlin, 21. October 2008

	Contents
	Listings
	I Theoretical Groundwork
	Introduction
	Potential Fields of Applications
	Structure of this Thesis
	Contributions
	Definition of Terms

	Criteria
	Classification of Dynamic Tracing Techniques
	Using Hardware-Generated Events
	Using Software-Generated Events
	Original Code Preserving Approaches
	Modifying the Environment
	Interposing Code Execution
	Original Code Modifying Approaches
	Injecting and Handling Traps
	Editing Code
	Concluding Remarks

	Challenges Of Runtime Code Modification
	Memory Model
	Memory Protection
	Jump distances
	Safety Concerns
	Cross-Modifying Code and Atomicity
	Concurrent Execution
	Preemption and Interruption
	Basic Block Boundaries
	Stack Walking
	Life Cycle Management of Dynamically Allocated Code
	Disassembly
	Parameter Validation
	Other Events

	Sharing of Resources
	Evaluation of Safety Concerns

	II NTrace
	Architectural Overview
	Approach
	Context
	Build Environments
	Operating System Releases
	Symbol Management

	Operation
	Function Entry Tracing
	Function Exit Tracing
	Event Callbacks
	Putting the Pieces Together

	Implementation
	Instrumentation
	Validation
	Applying the Patches

	Auxiliary Stack
	Thread Data
	ETHREAD Association
	Windows Research Kernel
	Retail Kernel

	Allocation
	Deallocation

	Unloading
	CallProxy and CallThunk
	State Preservation
	Reentrance

	Exception Handling
	Structured Exception Handling
	Exception Dispatching Process
	Auxiliary Stack Unwinding
	Topmost Exception Handler Initiating an Unwind
	Non-Topmost Exception Handler Initiating an Unwind
	Multiple Instrumented Routines Sharing a SEH Record
	Empty SEH Chain

	Event Handling
	Buffer Management
	Synchronization
	Reentrance
	Ordering
	Cache Behavior
	Implementation Choice

	Timing
	Symbols
	Call Nesting

	Concluding Remarks on Runtime Code Modification

	III Analysis
	Performance Measurements
	Benchmark
	System
	Performance Counters
	Test runs
	Results

	Conclusion
	Bibliography
	Index

